ﻻ يوجد ملخص باللغة العربية
For holographic CFT states near the vacuum, entanglement entropies for spatial subsystems can be expressed perturbatively as an expansion in the one-point functions of local operators dual to light bulk fields. Using the connection between quantum Fisher information for CFT states and canonical energy for the dual spacetimes, we describe a general formula for this expansion up to second-order in the one-point functions, for an arbitrary ball-shaped region, extending the first-order result given by the entanglement first law. For two-dimensional CFTs, we use this to derive a completely explicit formula for the second-order contribution to the entanglement entropy from the stress tensor. We show that this stress tensor formula can be reproduced by a direct CFT calculation for states related to the vacuum by a local conformal transformation. This result can also be reproduced via the perturbative solution to a non-linear scalar wave equation on an auxiliary de Sitter spacetime, extending the first-order result in arXiv/1509.00113.
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by usi
We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincare AdS space with a finite cutoff can be reinte
We use entanglement entropy to define a central charge associated to a two-dimensional defect or boundary in a conformal field theory (CFT). We present holographic calculations of this central charge for several maximally supersymmetric CFTs dual to
We review the results of refs. [1,2], in which the entanglement entropy in spaces with horizons, such as Rindler or de Sitter space, is computed using holography. This is achieved through an appropriate slicing of anti-de Sitter space and the impleme
The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is investigated over the Vaidya-AdS geometry. We numerically determine the Hubeny-Rangamani-Takayanagi (HRT) surface which may be a hemi-torus or two disks,