ﻻ يوجد ملخص باللغة العربية
Low-energy dynamics of many-body fracton excitations necessary to describe topological defects should be governed by a novel type of hydrodynamic theory. We use a Poisson bracket approach to systematically derive hydrodynamic equations from conservation laws of scalar theories with fracton excitations. We study two classes of theories. In the first class we introduce a general action for a scalar with a shift symmetry linear in the spatial coordinates, while the second class serves as a toy model for disclinations and dislocations propagating along the Burgers vector. We apply our construction to study hydrodynamic fluctuations around equilibrium states and derive the dispersion relations of hydrodynamic modes.
We present the nonlinear fluctuating hydrodynamics which governs the late time dynamics of a chaotic many-body system with simultaneous charge/mass, dipole/center of mass, and momentum conservation. This hydrodynamic effective theory is unstable belo
A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte
Considering nonintegrable quantum Ising chains with exponentially decaying interactions, we present matrix product state results that establish a connection between low-energy quasiparticle excitations and the kind of nonanalyticities in the Loschmid
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially
We consider $N$-particle generalizations of $eta$-paring states in a chain of $N$-component fermions and show that these states are exact (high-energy) eigenstates of an extended SU($N$) Hubbard model. We compute the singlet correlation function of t