ﻻ يوجد ملخص باللغة العربية
A novel stochastic fluid model is proposed with non-ideal structure factor consistent with compressibility, and adjustable transport coefficients. This Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the Direct Simulation Monte Carlo (DSMC) algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nano-particle suspended in a compressible solvent.
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards statistical theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The equations of motion for this system are
Low-energy dynamics of many-body fracton excitations necessary to describe topological defects should be governed by a novel type of hydrodynamic theory. We use a Poisson bracket approach to systematically derive hydrodynamic equations from conservat
The collective dynamics of liquid Gallium close to the melting point has been studied using Inelastic X-ray Scattering to probe lengthscales smaller than the size of the first coordination shell. %(momentum transfers, $Q$, $>$15 nm$^{-1}$). Although
We compute the rheological properties of inelastic hard spheres in steady shear flow for general shear rates and densities. Starting from the microscopic dynamics we generalise the Integration Through Transients (textsc{itt}) formalism to a fluid of
When granular systems are modeled by frictionless hard spheres, particle-particle collisions are considered as instantaneous events. This implies that while the velocities change according to the collision rule, the positions of the particles are the