ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex beams of atoms and molecules

74   0   0.0 ( 0 )
 نشر من قبل Yair Segev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angular momentum plays a central role in a multitude of phenomena in quantum mechanics, recurring in every length scale from the microscopic interactions of light and matter to the macroscopic behavior of superfluids. Vortex beams, carrying intrinsic orbital angular momentum (OAM), are now regularly generated with elementary particles such as photons and electrons, and harnessed for numerous applications including microscopy and communication. Untapped possibilities remain hidden in vortices of non-elementary particles, as their composite structure can lead to coupling of OAM with internal degrees of freedom. However, thus far, the creation of a vortex beam of a non-elementary particle has never been demonstrated experimentally. We present the first vortex beams of atoms and molecules, formed by diffracting supersonic beams of helium atoms and dimers, respectively, off binary masks made from transmission gratings. By achieving large particle coherence lengths and nanometric grating features, we observe a series of vortex rings corresponding to different OAM states in the accumulated images of particles impacting a detector. This method is general and can be applied to most atomic and molecular gases. Our results may open new frontiers in atomic physics, utilizing the additional degree of freedom of OAM to probe collisions and alter fundamental interactions.

قيم البحث

اقرأ أيضاً

In this work we show how constructing Wigner functions of heterogeneous quantum systems leads to new capability in the visualization of quantum states of atoms and molecules. This method allows us to display quantum correlations (entanglement) betwee n spin and spatial degrees of freedom (spin-orbit coupling) and between spin degrees of freedom, as well as more complex combinations of spin and spatial entanglement for the first time. This is important as there is growing recognition that such properties affect the physical characteristics, and chemistry, of atoms and molecules. Our visualizations are sufficiently accessible that, with some preparation, those with a non-technical background can gain an appreciation of subtle quantum properties of atomic and other systems. By providing new insights and modelling capability, our phase-space representation will be of great utility in understanding aspects of atomic physics and chemistry not available with current techniques.
We experimentally investigate the optical storage of perfect optical vortex (POV) and spatially multimode perfect optical vortex (MPOV) beams via electromagnetically induced transparency (EIT) in a hot vapor cell. In particular, we study the role tha t phase gradients and phase singularities play in reducing the blurring of the retrieved images due to atomic diffusion. Three kinds of manifestations are enumerated to demonstrate such effect. Firstly, the suppression of the ring width broadening is more prominent for POVs with larger orbital angular momentum (OAM). Secondly, the retrieved double-ring MPOV beams profiles present regular dark singularity distributions that are related to their vortex charge difference. Thirdly, the storage fidelities of the triple-ring MPOVs are substantially improved by designing line phase singularities between multi-ring MPOVs with the same OAM number but $pi$ offset phases between adjacent rings. Our experimental demonstration of MPOV storage opens new opportunities for increasing data capacity in quantum memories by spatial multiplexing, as well as the generation and manipulation of complex optical vortex arrays.
We investigate theoretically the long-range electrostatic interactions between a ground-state homonuclear alkali-metal dimer and an excited alkali-metal atom taking into account its fine-structure. The interaction involves the combination of first-or der quadrupole-quadrupole and second-order dipole-dipole effects. Depending on the considered species, the atomic spin-orbit may be comparable to the atom-molecule electrostatic energy and to the dimer rotational structure. Here we extend our general description in the framework of the second-order degenerate perturbation theory [M. Lepers and O. Dulieu, Eur. Phys. J. D, 2011] to various regimes induced by the magnitude of the atomic spin-orbit. A complex dynamics of the atom-molecule may take place at large distances, which may have consequences for the search for an universal model of ultracold inelastic collisions as proposed for instance in [Z. Idziaszek and P. S. Julienne, Phys. Rev. Lett. textbf{104}, 113202 (2010)].
Exchange of orbital angular momentum between Laguerre-Gaussian beam of light and center-of-mass motion of an atom or molecule is well known. We show that orbital angular momentum of light can also be transferred to the internal electronic or rotation al motion of an atom or a molecule provided the internal and center-of-mass motions are coupled. However, this transfer does not happen directly to the internal motion, but via center-of-mass motion. If atoms or molecules are cooled down to recoil limit then an exchange of angular momentum between the quantized center-of-mass motion and the internal motion is possible during interaction of cold atoms or molecules with Laguerre-Gaussian beam. The orientation of the exchanged angular momentum is determined by the sign of the winding number of Laguerre-Gaussian beam. We have presented selective results of numerical calculations for the quadrupole transition rates in interaction of Laguerre-Gaussian beam with an atomic Bose-Einstein condensate to illustrate the underlying mechanism of light orbital angular momentum transfer. We discuss how the alignment of diatomic molecules will facilitate to explore the effects of light orbital angular momentum on electronic motion of molecules.
Improving axial resolution is of paramount importance for three-dimensional optical imaging systems. Here, we investigate the ultimate precision in axial localization using vortex beams. For Laguerre-Gauss beams, this limit can be achieved with just an intensity scan. The same is not true for superpositions of Laguerre-Gauss beams, in particular for those with intensity profiles that rotate on defocusing. Microscopy methods based on rotating vortex beams may thus benefit from replacing traditional intensity sensors with advanced mode-sorting techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا