ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualizing entanglement in atoms and molecules

394   0   0.0 ( 0 )
 نشر من قبل Mark Everitt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we show how constructing Wigner functions of heterogeneous quantum systems leads to new capability in the visualization of quantum states of atoms and molecules. This method allows us to display quantum correlations (entanglement) between spin and spatial degrees of freedom (spin-orbit coupling) and between spin degrees of freedom, as well as more complex combinations of spin and spatial entanglement for the first time. This is important as there is growing recognition that such properties affect the physical characteristics, and chemistry, of atoms and molecules. Our visualizations are sufficiently accessible that, with some preparation, those with a non-technical background can gain an appreciation of subtle quantum properties of atomic and other systems. By providing new insights and modelling capability, our phase-space representation will be of great utility in understanding aspects of atomic physics and chemistry not available with current techniques.



قيم البحث

اقرأ أيضاً

We investigate the effects of inhomogeneities on spin entanglement in many-electron systems from an ab-initio approach. The key quantity in our approach is the local spin entanglement length, which is derived from the local concurrence of the electro nic system. Although the concurrence for an interacting systems is a highly nonlocal functional of the density, it does have a simple, albeit approximate expression in terms of Kohn-Sham orbitals. We show that the electron localization function -- well known in quantum chemistry as a descriptor of atomic shells and molecular bonds -- can be reinterpreted in terms of the ratio of the local entanglement length of the inhomogeneous system to the entanglement length of a homogenous system at the same density. We find that the spin entanglement is remarkably enhanced in atomic shells and molecular bonds.
Angular momentum plays a central role in a multitude of phenomena in quantum mechanics, recurring in every length scale from the microscopic interactions of light and matter to the macroscopic behavior of superfluids. Vortex beams, carrying intrinsic orbital angular momentum (OAM), are now regularly generated with elementary particles such as photons and electrons, and harnessed for numerous applications including microscopy and communication. Untapped possibilities remain hidden in vortices of non-elementary particles, as their composite structure can lead to coupling of OAM with internal degrees of freedom. However, thus far, the creation of a vortex beam of a non-elementary particle has never been demonstrated experimentally. We present the first vortex beams of atoms and molecules, formed by diffracting supersonic beams of helium atoms and dimers, respectively, off binary masks made from transmission gratings. By achieving large particle coherence lengths and nanometric grating features, we observe a series of vortex rings corresponding to different OAM states in the accumulated images of particles impacting a detector. This method is general and can be applied to most atomic and molecular gases. Our results may open new frontiers in atomic physics, utilizing the additional degree of freedom of OAM to probe collisions and alter fundamental interactions.
Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l oading of single atoms into individual traps, state initialization, state readout, single atom rotations, blockade-mediated manipulation of Rydberg atoms, and demonstration of entanglement.
We propose a scheme in which entanglement can be transferred from atoms (discrete variables) to entangled states of cavity fields (continuous variables). The cavities play the role of a kind of quantum memory for entanglement, in such a way that it i s possible to retrieve it back to the atoms. In our method, two three level atoms in a lambda configuration, previously entangled, are set to interact with single mode cavity fields prepared in coherent states. During the process, one e-bit of entanglement may be deposited in the cavities in an efficient way. We also show that the stored entanglement may be transferred back to flying atoms.
We demonstrate the first deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate. Parity oscillation measurements reveal an entanglement fidelity of $F=0.58pm0.04$, which is above t he entanglement threshold of $F=0.5$, without any correction for atom loss, and $F=0.71pm0.05$ after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا