ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range interactions between ultracold atoms and molecules including atomic spin-orbit

155   0   0.0 ( 0 )
 نشر من قبل Maxence Lepers
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically the long-range electrostatic interactions between a ground-state homonuclear alkali-metal dimer and an excited alkali-metal atom taking into account its fine-structure. The interaction involves the combination of first-order quadrupole-quadrupole and second-order dipole-dipole effects. Depending on the considered species, the atomic spin-orbit may be comparable to the atom-molecule electrostatic energy and to the dimer rotational structure. Here we extend our general description in the framework of the second-order degenerate perturbation theory [M. Lepers and O. Dulieu, Eur. Phys. J. D, 2011] to various regimes induced by the magnitude of the atomic spin-orbit. A complex dynamics of the atom-molecule may take place at large distances, which may have consequences for the search for an universal model of ultracold inelastic collisions as proposed for instance in [Z. Idziaszek and P. S. Julienne, Phys. Rev. Lett. textbf{104}, 113202 (2010)].



قيم البحث

اقرأ أيضاً

We theoretically investigate trapped ions interacting with atoms that are coupled to Rydberg states. The strong polarizabilities of the Rydberg levels increases the interaction strength between atoms and ions by many orders of magnitude, as compared to the case of ground state atoms, and may be mediated over micrometers. We calculate that such interactions can be used to generate entanglement between an atom and the motion or internal state of an ion. Furthermore, the ion could be used as a bus for mediating spin-spin interactions between atomic spins in analogy to much employed techniques in ion trap quantum simulation. The proposed scheme comes with attractive features as it maps the benefits of the trapped ion quantum system onto the atomic one without obviously impeding its intrinsic scalability. No ground state cooling of the ion or atom is required and the setup allows for full dynamical control. Moreover, the scheme is to a large extent immune to the micromotion of the ion. Our findings are of interest for developing hybrid quantum information platforms and for implementing quantum simulations of solid state physics.
177 - S.-W. Su , S.-C. Gou , I.-K. Liu 2014
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC phase-separates into domains, each of which contain density modulations - stripes - aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase spin-orbit coupled BECs.
We create fermionic dipolar $^{23}$Na$^6$Li molecules in their triplet ground state from an ultracold mixture of $^{23}$Na and $^6$Li. Using magneto-association across a narrow Feshbach resonance followed by a two-photon STIRAP transfer to the triple t ground state, we produce $3,{times},10^4$ ground state molecules in a spin-polarized state. We observe a lifetime of $4.6,text{s}$ in an isolated molecular sample, approaching the $p$-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.
We dress atoms with multiple-radiofrequency fields and investigate the spectrum of transitions driven by an additional probe field. A complete theoretical description of this rich spectrum is presented, in which we find allowed transitions and determ ine their amplitudes using the resolvent formalism. Experimentally, we observe transitions up to sixth order in the probe field using radiofrequency spectroscopy of Bose-Einstein condensates trapped in single- and multiple-radiofrequency-dressed potentials. We find excellent agreement between theory and experiment, including the prediction and verification of previously unobserved transitions, even in the single-radiofrequency case.
A fundamental question in the study of chemical reactions is how reactions proceed at a collision energy close to absolute zero. This question is no longer hypothetical: quantum degenerate gases of atoms and molecules can now be created at temperatur es lower than a few tens of nanoKelvin. In this work we consider the benchmark ultracold reaction between, the most-celebrated ultracold molecule, KRb and K. For the first time we map out an accurate ab initio ground state potential energy surface of the KRbK complex in full dimensionality and report numerically exact quantum-mechanical reaction dynamics. The distribution of rotationally resolved rates is shown to be Poissonian. An analysis of the hyperspherical adiabatic potential curves explains this statistical character revealing a chaotic distribution for the short-range collision complex that plays a key role in governing the reaction outcome. We compare this with a lighter system with a smaller density of states (here the LiYbLi trimer) which displays random, and not chaotic, behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا