ﻻ يوجد ملخص باللغة العربية
The IEEE 802.1 time-sensitive networking (TSN) standards aim at improving the real-time capabilities of standard Ethernet. TSN is widely recognized as the long-term replacement of proprietary technologies for industrial control systems. However, wired connectivity alone is not sufficient to meet the requirements of future industrial systems. The fifth-generation (5G) mobile/cellular technology has been designed with native support for ultra-reliable low-latency communication (uRLLC). 5G is promising to meet the stringent requirements of industrial systems in the wireless domain. Converged operation of 5G and TSN systems is crucial for achieving end-to-end deterministic connectivity in industrial networks. Accurate time synchronization is key to integrated operation of 5G and TSN systems. To this end, this paper evaluates the performance of over-the-air time synchronization mechanism which has been proposed in 3GPP Release 16. We analyze the accuracy of time synchronization through the boundary clock approach in the presence of clock drift and different air-interface timing errors related to reference time indication. We also investigate frequency and scalability aspects of over-the-air time synchronization. Our performance evaluation reveals the conditions under which 1 (mu)s or below requirement for TSN time synchronization can be achieved.
In typical sensor networks, data collection and processing are separated. A sink collects data from all nodes sequentially, which is very time consuming. Over-the-air computation, as a new diagram of sensor networks, integrates data collection and pr
Edge computing that leverages cloud resources to the proximity of user devices is seen as the future infrastructure for distributed applications. However, developing and deploying edge applications, that rely on cellular networks, is burdensome. Such
Wireless edge is about distributing intelligence to the wireless devices wherein the distribution of accurate time reference is essential for time-critical machine-type communication (cMTC). In 5G-based cMTC, enabling time synchronization in the wire
Many network applications, e.g., industrial control, demand Ultra-Low Latency (ULL). However, traditional packet networks can only reduce the end-to-end latencies to the order of tens of milliseconds. The IEEE 802.1 Time Sensitive Networking (TSN) st
The recent and upcoming releases of the 3rd Generation Partnership Projects 5G New Radio specifications include features that are motivated by providing connectivity services to a broad set of verticals, including the automotive, rail, and air transp