ﻻ يوجد ملخص باللغة العربية
The recent and upcoming releases of the 3rd Generation Partnership Projects 5G New Radio specifications include features that are motivated by providing connectivity services to a broad set of verticals, including the automotive, rail, and air transport industries. Currently, several radio access network features are being further enhanced or newly introduced in NR to improve 5Gs capability to provide fast, reliable, and non-limiting connectivity for transport applications. In this article, we review the most important characteristics and requirements of a wide range of services that are driven by the desire to help the transport sector to become more sustainable, economically viable, safe, and secure. These requirements will be supported by the evolving and entirely new features of 5G NR systems, including accurate positioning, reference signal design to enable multi-transmission and reception points, service-specific scheduling configuration, and service quality prediction.
Providing high-capacity radio connectivity for high-speed trains (HSTs) is one of the most important use cases of emerging 5G New Radio (NR) networks. In this article, we show that 5G NR technology can also facilitate high-accuracy continuous localiz
Evolving 5G New Radio (NR) to support non-terrestrial networks (NTNs), particularly satellite communication networks, is under exploration in 3GPP. The movement of the spaceborne platforms in NTNs may result in large timing varying Doppler shift that
The newly introduced ultra-reliable low latency communication service class in 5G New Radio depends on innovative low latency radio resource management solutions that can guarantee high reliability. Grant-free random access, where channel resources a
In this work, we briefly outline the core 5G air interface improvements introduced by the latest New Radio (NR) specifications, as well as elaborate on the unique features of initial access in 5G NR with a particular emphasis on millimeter-wave (mmWa
The IEEE 802.1 time-sensitive networking (TSN) standards aim at improving the real-time capabilities of standard Ethernet. TSN is widely recognized as the long-term replacement of proprietary technologies for industrial control systems. However, wire