ﻻ يوجد ملخص باللغة العربية
Wireless edge is about distributing intelligence to the wireless devices wherein the distribution of accurate time reference is essential for time-critical machine-type communication (cMTC). In 5G-based cMTC, enabling time synchronization in the wireless edge means moving beyond the current synchronization needs and solutions in 5G radio access. In this article, we analyze the device-level synchronization needs of potential cMTC applications: industrial automation, power distribution, vehicular communication, and live audio/video production. We present an over-the-air (OTA) synchronization scheme comprised of 5G air interface parameters, and discuss their associated timing errors. We evaluate the estimation error in device-to-base station propagation delay from timing advance (TA) under random errors and show how to reduce the estimation error. In the end, we identify the random errors specific to dense multipath fading environments and discuss countermeasures.
Mobile-edge computing (MEC) and wireless power transfer are technologies that can assist in the implementation of next generation wireless networks, which will deploy a large number of computational and energy limited devices. In this letter, we cons
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN
Massive machine-type communications (mMTC) is a crucial scenario to support booming Internet of Things (IoTs) applications. In mMTC, although a large number of devices are registered to an access point (AP), very few of them are active with uplink sh
The massive sensing data generated by Internet-of-Things will provide fuel for ubiquitous artificial intelligence (AI), automating the operations of our society ranging from transportation to healthcare. The realistic adoption of this technique howev
Motivated by the increasing computational capacity of wireless user equipments (UEs), e.g., smart phones, tablets, or vehicles, as well as the increasing concerns about sharing private data, a new machine learning model has emerged, namely federated