ﻻ يوجد ملخص باللغة العربية
We present a comprehensive study of the linear response of interacting underdamped Brownian particles to simple shear flow. We collect six different routes for computing the response, two of which are based on the symmetry of the considered system and observable with respect to the shear axes. We include the extension of the Green-Kubo relation to underdamped cases, which shows two unexpected additional terms. These six computational methods are applied to investigate the relaxation of the response towards the steady state for different observables, where interesting effects due to interactions and a finite particle mass are observed. Moreover, we compare the different response relations in terms of their statistical efficiency, identifying their relative demand on experimental measurement time or computational resources in computer simulations. Finally, several measures of breakdown of linear response theory for larger shear rates are discussed.
We study the linear response of interacting active Brownian particles in an external potential to simple shear flow. Using a path integral approach, we derive the linear response of any state observable to initiating shear in terms of correlation fun
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic rev
A universal quantum work relation is proved for isolated time-dependent Hamiltonian systems in a magnetic field as the consequence of microreversibility. This relation involves a functional of an arbitrary observable. The quantum Jarzynski equality i
We focus on a paradigmatic two-dimensional model of a nanoscale heat engine, - the so-called Brownian gyrator - whose stochastic dynamics is described by a pair of coupled Langevin equations with different temperature noise terms. This model is known
We determine the nonlocal stress autocorrelation tensor in an homogeneous and isotropic system of interacting Brownian particles starting from the Smoluchowski equation of the configurational probability density. In order to relate stresses to partic