ﻻ يوجد ملخص باللغة العربية
We focus on a paradigmatic two-dimensional model of a nanoscale heat engine, - the so-called Brownian gyrator - whose stochastic dynamics is described by a pair of coupled Langevin equations with different temperature noise terms. This model is known to produce a curl-carrying non-equilibrium steady-state with persistent angular rotations. We generalize the original model introducing constant forces doing work on the gyrator, for which we derive exact asymmetry relations, that are reminiscent of the standard fluctuation relations. Unlike the latter, our relations concern instantaneous and not time averaged values of the observables of interest. We investigate the full two-dimensional dynamics as well as the dynamics projected on the $x$- and $y$-axes, so that information about the state of the system can be obtained from just a part of its degrees of freedom. Such a state is characterized by effective temperatures that can be measured in nanoscale devices, but do not have a thermodynamic nature. Remarkably, the effective temperatures appearing in full dynamics are distinctly different from the ones emerging in its projections, confirming that they are not thermodynamic quantities, although they precisely characterize the state of the system.
We investigate various possible definitions of an effective temperature for a particularly simple nonequilibrium stationary system, namely a heated Brownian particle suspended in a fluid. The effective temperature based on the fluctuation dissipation
We study the stationary dynamics of an active interacting Brownian particle system. We measure the violations of the fluctuation dissipation theorem, and the corresponding effective temperature, in a locally resolved way. Quite naturally, in the homo
We consider a model of a two-dimensional molecular machine - called Brownian gyrator - that consists of two coordinates coupled to each other and to separate heat baths at temperatures respectively $T_x$ and $T_y$. We consider the limit in which one
The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einsteins relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equi
We present a comprehensive study of the linear response of interacting underdamped Brownian particles to simple shear flow. We collect six different routes for computing the response, two of which are based on the symmetry of the considered system an