ﻻ يوجد ملخص باللغة العربية
Intensification and poleward expansion of upwelling favourable winds have been predicted as a response to anthropogenic global climate change and have recently been documented in most Eastern Boundary Upwelling Ecosystems of the world. To identify how these processes are impacting nearshore oceanographic habitats and, especially, long term trends of primary productivity in the Humboldt Upwelling Ecosystem (HUE), we analysed time series of sea level pressure, wind stress, sea surface and atmospheric surface temperatures, and Chlorophyll-a, as a proxy for primary productivity, along 26{deg} - 36{deg} S. We show that climate induced trends in primary productivity are highly heterogeneous across the region. On the one hand, the well documented poleward migration of the South Pacific Anticyclone (SPA) has led to decreased spring upwelling winds in the region between ca. 30{deg} and 34{deg} S, and to their intensification to the south. Decreased winds have produced slight increases in sea surface temperature and a pronounced and meridionally extensive decrease in surface Chlorophyll-a in this region of central Chile. To the north of 30{deg} S, significant increases in upwelling winds, decreased SST, and enhanced Chlorophyll-a concentration are observed in the nearshore. We show that this increased in upwelling driven coastal productivity is probably produced by the increased land-sea pressure gradients (Bakuns effect) that have occurred over the past two decades north of 30{deg} S. Thus, climate drivers along the HUE are inducing contrasting trends in oceanographic conditions and primary productivity, which can have far-reaching consequences for coastal pelagic and benthic ecosystems and lead to geographic displacements of the major fisheries.
Sea surface height anomalies observed by satellites in 1993--2012 are combined with simulation and observations by surface drifters and Argo floats to study water flow pattern in the Near Strait (NS) connected the Pacific Ocean with the Bering Sea. D
Sedimentation of particles in the ocean leads to inhomogeneous horizontal distributions at depth, even if the release process is homogeneous. We study this phenomenon considering a horizontal sheet of sinking particles immersed in an oceanic flow, an
The Pacific Ocean Neutrino Experiment (P-ONE) is a new initiative with a vision towards constructing a multi-cubic kilometre neutrino telescope, to expand our observable window of the Universe to highest energies, installed within the deep Pacific Oc
Dissolved manganese (Mn) is a biologically essential element, and its oxidised form is involved in the removal of trace elements from ocean waters. Recently, a large number of highly accurate Mn measurements have been obtained in the Atlantic, Indian
Dynamical systems theory approach has been successfully used in physical oceanography for the last two decades to study mixing and transport of water masses in the ocean. The basic theoretical ideas have been borrowed from the phenomenon of chaotic a