ترغب بنشر مسار تعليمي؟ اضغط هنا

The Pacific Ocean Neutrino Experiment

172   0   0.0 ( 0 )
 نشر من قبل Elisa Resconi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Pacific Ocean Neutrino Experiment (P-ONE) is a new initiative with a vision towards constructing a multi-cubic kilometre neutrino telescope, to expand our observable window of the Universe to highest energies, installed within the deep Pacific Ocean underwater infrastructure of Ocean Networks Canada.



قيم البحث

اقرأ أيضاً

106 - Nicolai Bailly 2021
The STRings for Absorption length in Water (STRAW) experiment is the first in a series of pathfinder missions for the Pacific Ocean Neutrino Experiment (P-ONE), a future large-scale neutrino telescope in the north-eastern Pacific Ocean. STRAW consist s of two 150 m long mooring lines instrumented with optical emitters and detectors. The experiment is designed to measure the attenuation length of the water and perform a long-term assessment of the optical background at the future P-ONE site. After two years of continuous operation, measurements from STRAW show an optical attenuation length of about 28 metres at 450 nm. Additionally, the data allows a study of the ambient undersea background. The overall optical environment reported here is comparable to other deep-water neutrino telescopes and qualifies the site for the deployment of P-ONE.
The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) uses low-noise fully depleted charge-coupled devices (CCDs) with the goal of measuring low-energy recoils from coherent elastic scattering (CE$ u$NS) of reactor antineutrinos with silicon nuclei and testing nonstandard neutrino interactions (NSI). We report here the first results of the detector array deployed in 2016, considering an active mass 47.6 g (8 CCDs), which is operating at a distance of 30 m from the core of the Angra 2 nuclear reactor, with a thermal power of 3.8 GW. A search for neutrino events is performed by comparing data collected with reactor on (2.1 kg-day) and reactor off (1.6 kg-day). The results show no excess in the reactor-on data, reaching the world record sensitivity down to recoil energies of about 1 keV (0.1 keV electron-equivalent). A 95% confidence level limit for new physics is established at an event rate of 40 times the one expected from the standard model at this energy scale. The results presented here provide a new window to low-energy neutrino physics, allowing one to explore for the first time the energies accessible through the low threshold of CCDs. They will lead to new constrains on NSI from the CE$ u$NS of antineutrinos from nuclear reactors.
A search for cosmic neutrino sources using the data collected with the ANTARES neutrino telescope between early 2007 and the end of 2015 is performed. For the first time, all neutrino interactions --charged and neutral current interactions of all fla vours-- are considered in a search for point-like sources with the ANTARES detector. In previous analyses, only muon neutrino charged current interactions were used. This is achieved by using a novel reconstruction algorithm for shower-like events in addition to the standard muon track reconstruction. The shower channel contributes about 23% of all signal events for an $E^{-2}$ energy spectrum. No significant excess over background is found. The most signal-like cluster of events is located at $(alpha,delta) = (343.8^circ, 23.5^circ)$ with a significance of $1.9sigma$. The neutrino flux sensitivity of the search is about $E^2 dvarPhi/dE = 6cdot10^{-9} GeV cm^{-2} s^{-1}$ for declinations from $-90^circ$ up to $-42^circ$, and below $10^{-8} GeV cm^{-2} s^{-1}$ for declinations up to $5^{circ}$. The directions of 106 source candidates and of 13 muon track events from the IceCube HESE sample are investigated for a possible neutrino signal and upper limits on the signal flux are determined.
One of the main objectives of the ANTARES telescope is the search for point-like neutrino sources. Both the pointing accuracy and the angular resolution of the detector are important in this context and a reliable way to evaluate this performance is needed. In order to measure the pointing accuracy of the detector, one possibility is to study the shadow of the Moon, i.e. the deficit of the atmospheric muon flux from the direction of the Moon induced by the absorption of cosmic rays. Analysing the data taken between 2007 and 2016, the Moon shadow is observed with $3.5sigma$ statistical significance. The detector angular resolution for downward-going muons is 0.73$^{circ}pm0.14^{circ}.$ The resulting pointing performance is consistent with the expectations. An independent check of the telescope pointing accuracy is realised with the data collected by a shower array detector onboard of a ship temporarily moving around the ANTARES location.
170 - Hanyu Wei 2013
Providing an early warning of a galactic supernova using neutrino signals is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay reactor neutrino experiment, with a unique feature of multiple liquid scintillator detec tors separated in space, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By deploying 8 Antineutrino Detectors (ADs) in three different experimental halls, we obtain a more powerful and prompt rejection of muon spallation background than single-detector experiments. A dedicated supernova online trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا