ﻻ يوجد ملخص باللغة العربية
Estimating homography to align image pairs captured by different sensors or image pairs with large appearance changes is an important and general challenge for many computer vision applications. In contrast to others, we propose a generic solution to pixel-wise align multimodal image pairs by extending the traditional Lucas-Kanade algorithm with networks. The key contribution in our method is how we construct feature maps, named as deep Lucas-Kanade feature map (DLKFM). The learned DLKFM can spontaneously recognize invariant features under various appearance-changing conditions. It also has two nice properties for the Lucas-Kanade algorithm: (1) The template feature map keeps brightness consistency with the input feature map, thus the color difference is very small while they are well-aligned. (2) The Lucas-Kanade objective function built on DLKFM has a smooth landscape around ground truth homography parameters, so the iterative solution of the Lucas-Kanade can easily converge to the ground truth. With those properties, directly updating the Lucas-Kanade algorithm on our feature maps will precisely align image pairs with large appearance changes. We share the datasets, code, and demo video online.
In this paper, we introduce a new framework for unsupervised deep homography estimation. Our contributions are 3 folds. First, unlike previous methods that regress 4 offsets for a homography, we propose a homography flow representation, which can be
Homography estimation is an important task in computer vision, such as image stitching, video stabilization, and camera calibration. Traditional homography estimation methods heavily depend on the quantity and distribution of feature points, leading
Image matting is an ill-posed problem that aims to estimate the opacity of foreground pixels in an image. However, most existing deep learning-based methods still suffer from the coarse-grained details. In general, these algorithms are incapable of f
We introduce a method for manifold alignment of different modalities (or domains) of remote sensing images. The problem is recurrent when a set of multitemporal, multisource, multisensor and multiangular images is available. In these situations, imag
True understanding of videos comes from a joint analysis of all its modalities: the video frames, the audio track, and any accompanying text such as closed captions. We present a way to learn a compact multimodal feature representation that encodes a