ترغب بنشر مسار تعليمي؟ اضغط هنا

Prior-Induced Information Alignment for Image Matting

74   0   0.0 ( 0 )
 نشر من قبل Yuhao Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image matting is an ill-posed problem that aims to estimate the opacity of foreground pixels in an image. However, most existing deep learning-based methods still suffer from the coarse-grained details. In general, these algorithms are incapable of felicitously distinguishing the degree of exploration between deterministic domains (certain FG and BG pixels) and undetermined domains (uncertain in-between pixels), or inevitably lose information in the continuous sampling process, leading to a sub-optimal result. In this paper, we propose a novel network named Prior-Induced Information Alignment Matting Network (PIIAMatting), which can efficiently model the distinction of pixel-wise response maps and the correlation of layer-wise feature maps. It mainly consists of a Dynamic Gaussian Modulation mechanism (DGM) and an Information Alignment strategy (IA). Specifically, the DGM can dynamically acquire a pixel-wise domain response map learned from the prior distribution. The response map can present the relationship between the opacity variation and the convergence process during training. On the other hand, the IA comprises an Information Match Module (IMM) and an Information Aggregation Module (IAM), jointly scheduled to match and aggregate the adjacent layer-wise features adaptively. Besides, we also develop a Multi-Scale Refinement (MSR) module to integrate multi-scale receptive field information at the refinement stage to recover the fluctuating appearance details. Extensive quantitative and qualitative evaluations demonstrate that the proposed PIIAMatting performs favourably against state-of-the-art image matting methods on the Alphamatting.com, Composition-1K and Distinctions-646 dataset.



قيم البحث

اقرأ أيضاً

Most previous image matting methods require a roughly-specificed trimap as input, and estimate fractional alpha values for all pixels that are in the unknown region of the trimap. In this paper, we argue that directly estimating the alpha matte from a coarse trimap is a major limitation of previous methods, as this practice tries to address two difficult and inherently different problems at the same time: identifying true blending pixels inside the trimap region, and estimate accurate alpha values for them. We propose AdaMatting, a new end-to-end matting framework that disentangles this problem into two sub-tasks: trimap adaptation and alpha estimation. Trimap adaptation is a pixel-wise classification problem that infers the global structure of the input image by identifying definite foreground, background, and semi-transparent image regions. Alpha estimation is a regression problem that calculates the opacity value of each blended pixel. Our method separately handles these two sub-tasks within a single deep convolutional neural network (CNN). Extensive experiments show that AdaMatting has additional structure awareness and trimap fault-tolerance. Our method achieves the state-of-the-art performance on Adobe Composition-1k dataset both qualitatively and quantitatively. It is also the current best-performing method on the alphamatting.com online evaluation for all commonly-used metrics.
Image matting is a key technique for image and video editing and composition. Conventionally, deep learning approaches take the whole input image and an associated trimap to infer the alpha matte using convolutional neural networks. Such approaches s et state-of-the-arts in image matting; however, they may fail in real-world matting applications due to hardware limitations, since real-world input images for matting are mostly of very high resolution. In this paper, we propose HDMatt, a first deep learning based image matting approach for high-resolution inputs. More concretely, HDMatt runs matting in a patch-based crop-and-stitch manner for high-resolution inputs with a novel module design to address the contextual dependency and consistency issues between different patches. Compared with vanilla patch-based inference which computes each patch independently, we explicitly model the cross-patch contextual dependency with a newly-proposed Cross-Patch Contextual module (CPC) guided by the given trimap. Extensive experiments demonstrate the effectiveness of the proposed method and its necessity for high-resolution inputs. Our HDMatt approach also sets new state-of-the-art performance on Adobe Image Matting and AlphaMatting benchmarks and produce impressive visual results on more real-world high-resolution images.
Despite the significant progress made by deep learning in natural image matting, there has been so far no representative work on deep learning for video matting due to the inherent technical challenges in reasoning temporal domain and lack of large-s cale video matting datasets. In this paper, we propose a deep learning-based video matting framework which employs a novel and effective spatio-temporal feature aggregation module (ST-FAM). As optical flow estimation can be very unreliable within matting regions, ST-FAM is designed to effectively align and aggregate information across different spatial scales and temporal frames within the network decoder. To eliminate frame-by-frame trimap annotations, a lightweight interactive trimap propagation network is also introduced. The other contribution consists of a large-scale video matting dataset with groundtruth alpha mattes for quantitative evaluation and real-world high-resolution videos with trimaps for qualitative evaluation. Quantitative and qualitative experimental results show that our framework significantly outperforms conventional video matting and deep image matting methods applied to video in presence of multi-frame temporal information.
Image matting and image harmonization are two important tasks in image composition. Image matting, aiming to achieve foreground boundary details, and image harmonization, aiming to make the background compatible with the foreground, are both promisin g yet challenging tasks. Previous works consider optimizing these two tasks separately, which may lead to a sub-optimal solution. We propose to optimize matting and harmonization simultaneously to get better performance on both the two tasks and achieve more natural results. We propose a new Generative Adversarial (GAN) framework which optimizing the matting network and the harmonization network based on a self-attention discriminator. The discriminator is required to distinguish the natural images from different types of fake synthesis images. Extensive experiments on our constructed dataset demonstrate the effectiveness of our proposed method. Our dataset and dataset generating pipeline can be found in url{https://git.io/HaMaGAN}
We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatical ly optimize the encoder-decoder (E-D) structure and meta-parameters of the DIP network, which serves as a content-specific prior to regularize these single image restoration tasks. Our binary representation encodes the design space for an asymmetric E-D network that typically converges to yield a content-specific DIP within 10-20 generations using a population size of 500. The optimized architectures consistently improve upon the visual quality of classical DIP for a diverse range of photographic and artistic content.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا