ترغب بنشر مسار تعليمي؟ اضغط هنا

Motion Basis Learning for Unsupervised Deep Homography Estimation with Subspace Projection

98   0   0.0 ( 0 )
 نشر من قبل Nianjin Ye
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a new framework for unsupervised deep homography estimation. Our contributions are 3 folds. First, unlike previous methods that regress 4 offsets for a homography, we propose a homography flow representation, which can be estimated by a weighted sum of 8 pre-defined homography flow bases. Second, considering a homography contains 8 Degree-of-Freedoms (DOFs) that is much less than the rank of the network features, we propose a Low Rank Representation (LRR) block that reduces the feature rank, so that features corresponding to the dominant motions are retained while others are rejected. Last, we propose a Feature Identity Loss (FIL) to enforce the learned image feature warp-equivariant, meaning that the result should be identical if the order of warp operation and feature extraction is swapped. With this constraint, the unsupervised optimization is achieved more effectively and more stable features are learned. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the state-of-the-art on the homography benchmark datasets both qualitatively and quantitatively. Code is available at https://github.com/megvii-research/BasesHomo.



قيم البحث

اقرأ أيضاً

In this paper, we introduce NBNet, a novel framework for image denoising. Unlike previous works, we propose to tackle this challenging problem from a new perspective: noise reduction by image-adaptive projection. Specifically, we propose to train a n etwork that can separate signal and noise by learning a set of reconstruction basis in the feature space. Subsequently, image denosing can be achieved by selecting corresponding basis of the signal subspace and projecting the input into such space. Our key insight is that projection can naturally maintain the local structure of input signal, especially for areas with low light or weak textures. Towards this end, we propose SSA, a non-local subspace attention module designed explicitly to learn the basis generation as well as the subspace projection. We further incorporate SSA with NBNet, a UNet structured network designed for end-to-end image denosing. We conduct evaluations on benchmarks, including SIDD and DND, and NBNet achieves state-of-the-art performance on PSNR and SSIM with significantly less computational cost.
83 - Lang Nie , Chunyu Lin , Kang Liao 2021
Homography estimation is an important task in computer vision, such as image stitching, video stabilization, and camera calibration. Traditional homography estimation methods heavily depend on the quantity and distribution of feature points, leading to poor robustness in textureless scenes. The learning solutions, on the contrary, try to learn robust deep features but demonstrate unsatisfying performance in the scenes of low overlap rates. In this paper, we address the two problems simultaneously, by designing a contextual correlation layer, which can capture the long-range correlation on feature maps and flexibly be bridged in a learning framework. In addition, considering that a single homography can not represent the complex spatial transformation in depth-varying images with parallax, we propose to predict multi-grid homography from global to local. Moreover, we equip our network with depth perception capability, by introducing a novel depth-aware shape-preserved loss. Extensive experiments demonstrate the superiority of our method over other state-of-the-art solutions in the synthetic benchmark dataset and real-world dataset. The codes and models will be available at https://github.com/nie-lang/Multi-Grid-Deep-Homogarphy.
Kinship verification is a long-standing research challenge in computer vision. The visual differences presented to the face have a significant effect on the recognition capabilities of the kinship systems. We argue that aggregating multiple visual kn owledge can better describe the characteristics of the subject for precise kinship identification. Typically, the age-invariant features can represent more natural facial details. Such age-related transformations are essential for face recognition due to the biological effects of aging. However, the existing methods mainly focus on employing the single-view image features for kinship identification, while more meaningful visual properties such as race and age are directly ignored in the feature learning step. To this end, we propose a novel deep collaborative multi-modal learning (DCML) to integrate the underlying information presented in facial properties in an adaptive manner to strengthen the facial details for effective unsupervised kinship verification. Specifically, we construct a well-designed adaptive feature fusion mechanism, which can jointly leverage the complementary properties from different visual perspectives to produce composite features and draw greater attention to the most informative components of spatial feature maps. Particularly, an adaptive weighting strategy is developed based on a novel attention mechanism, which can enhance the dependencies between different properties by decreasing the information redundancy in channels in a self-adaptive manner. To validate the effectiveness of the proposed method, extensive experimental evaluations conducted on four widely-used datasets show that our DCML method is always superior to some state-of-the-art kinship verification methods.
We propose a semantics-driven unsupervised learning approach for monocular depth and ego-motion estimation from videos in this paper. Recent unsupervised learning methods employ photometric errors between synthetic view and actual image as a supervis ion signal for training. In our method, we exploit semantic segmentation information to mitigate the effects of dynamic objects and occlusions in the scene, and to improve depth prediction performance by considering the correlation between depth and semantics. To avoid costly labeling process, we use noisy semantic segmentation results obtained by a pre-trained semantic segmentation network. In addition, we minimize the position error between the corresponding points of adjacent frames to utilize 3D spatial information. Experimental results on the KITTI dataset show that our method achieves good performance in both depth and ego-motion estimation tasks.
Estimating homography to align image pairs captured by different sensors or image pairs with large appearance changes is an important and general challenge for many computer vision applications. In contrast to others, we propose a generic solution to pixel-wise align multimodal image pairs by extending the traditional Lucas-Kanade algorithm with networks. The key contribution in our method is how we construct feature maps, named as deep Lucas-Kanade feature map (DLKFM). The learned DLKFM can spontaneously recognize invariant features under various appearance-changing conditions. It also has two nice properties for the Lucas-Kanade algorithm: (1) The template feature map keeps brightness consistency with the input feature map, thus the color difference is very small while they are well-aligned. (2) The Lucas-Kanade objective function built on DLKFM has a smooth landscape around ground truth homography parameters, so the iterative solution of the Lucas-Kanade can easily converge to the ground truth. With those properties, directly updating the Lucas-Kanade algorithm on our feature maps will precisely align image pairs with large appearance changes. We share the datasets, code, and demo video online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا