ﻻ يوجد ملخص باللغة العربية
In practical data analysis under noisy environment, it is common to first use robust methods to identify outliers, and then to conduct further analysis after removing the outliers. In this paper, we consider statistical inference of the model estimated after outliers are removed, which can be interpreted as a selective inference (SI) problem. To use conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing methods cannot be directly used here because they are applicable to the case where the selection events can be represented by linear/quadratic constraints. In this paper, we propose a conditional SI method for popular robust regressions by using homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.
In support vector machine (SVM) applications with unreliable data that contains a portion of outliers, non-robustness of SVMs often causes considerable performance deterioration. Although many approaches for improving the robustness of SVMs have been
Conditional selective inference (SI) has been actively studied as a new statistical inference framework for data-driven hypotheses. The basic idea of conditional SI is to make inferences conditional on the selection event characterized by a set of li
Outliers are ubiquitous in modern data sets. Distance-based techniques are a popular non-parametric approach to outlier detection as they require no prior assumptions on the data generating distribution and are simple to implement. Scaling these tech
Conditional selective inference (SI) has been studied intensively as a new statistical inference framework for data-driven hypotheses. The basic concept of conditional SI is to make the inference conditional on the selection event, which enables an e
We present a new piecewise linear regression methodology that utilizes fitting a difference of convex functions (DC functions) to the data. These are functions $f$ that may be represented as the difference $phi_1 - phi_2$ for a choice of convex funct