ترغب بنشر مسار تعليمي؟ اضغط هنا

More Powerful Conditional Selective Inference for Generalized Lasso by Parametric Programming

57   0   0.0 ( 0 )
 نشر من قبل Vo Nguyen Le Duy
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Conditional selective inference (SI) has been studied intensively as a new statistical inference framework for data-driven hypotheses. The basic concept of conditional SI is to make the inference conditional on the selection event, which enables an exact and valid statistical inference to be conducted even when the hypothesis is selected based on the data. Conditional SI has mainly been studied in the context of model selection, such as vanilla lasso or generalized lasso. The main limitation of existing approaches is the low statistical power owing to over-conditioning, which is required for computational tractability. In this study, we propose a more powerful and general conditional SI method for a class of problems that can be converted into quadratic parametric programming, which includes generalized lasso. The key concept is to compute the continuum path of the optimal solution in the direction of the selected test statistic and to identify the subset of the data space that corresponds to the model selection event by following the solution path. The proposed parametric programming-based method not only avoids the aforementioned major drawback of over-conditioning, but also improves the performance and practicality of SI in various respects. We conducted several experiments to demonstrate the effectiveness and efficiency of our proposed method.



قيم البحث

اقرأ أيضاً

Conditional selective inference (SI) has been actively studied as a new statistical inference framework for data-driven hypotheses. The basic idea of conditional SI is to make inferences conditional on the selection event characterized by a set of li near and/or quadratic inequalities. Conditional SI has been mainly studied in the context of feature selection such as stepwise feature selection (SFS). The main limitation of the existing conditional SI methods is the loss of power due to over-conditioning, which is required for computational tractability. In this study, we develop a more powerful and general conditional SI method for SFS using the homotopy method which enables us to overcome this limitation. The homotopy-based SI is especially effective for more complicated feature selection algorithms. As an example, we develop a conditional SI method for forward-backward SFS with AIC-based stopping criteria and show that it is not adversely affected by the increased complexity of the algorithm. We conduct several experiments to demonstrate the effectiveness and efficiency of the proposed method.
In practical data analysis under noisy environment, it is common to first use robust methods to identify outliers, and then to conduct further analysis after removing the outliers. In this paper, we consider statistical inference of the model estimat ed after outliers are removed, which can be interpreted as a selective inference (SI) problem. To use conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing methods cannot be directly used here because they are applicable to the case where the selection events can be represented by linear/quadratic constraints. In this paper, we propose a conditional SI method for popular robust regressions by using homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.
Conditional estimation given specific covariate values (i.e., local conditional estimation or functional estimation) is ubiquitously useful with applications in engineering, social and natural sciences. Existing data-driven non-parametric estimators mostly focus on structured homogeneous data (e.g., weakly independent and stationary data), thus they are sensitive to adversarial noise and may perform poorly under a low sample size. To alleviate these issues, we propose a new distributionally robust estimator that generates non-parametric local estimates by minimizing the worst-case conditional expected loss over all adversarial distributions in a Wasserstein ambiguity set. We show that despite being generally intractable, the local estimator can be efficiently found via convex optimization under broadly applicable settings, and it is robust to the corruption and heterogeneity of the data. Experiments with synthetic and MNIST datasets show the competitive performance of this new class of estimators.
Selective inference is a recent research topic that tries to perform valid inference after using the data to select a reasonable statistical model. We propose MAGIC, a new method for selective inference that is general, powerful and tractable. MAGIC is a method for selective inference after solving a convex optimization problem with smooth loss and $ell_1$ penalty. Randomization is incorporated into the optimization problem to boost statistical power. Through reparametrization, MAGIC reduces the problem into a sampling problem with simple constraints. MAGIC applies to many $ell_1$ penalized optimization problem including the Lasso, logistic Lasso and neighborhood selection in graphical models, all of which we consider in this paper.
Image segmentation is one of the most fundamental tasks of computer vision. In many practical applications, it is essential to properly evaluate the reliability of individual segmentation results. In this study, we propose a novel framework to provid e the statistical significance of segmentation results in the form of p-values. Specifically, we consider a statistical hypothesis test for determining the difference between the object and the background regions. This problem is challenging because the difference can be deceptively large (called segmentation bias) due to the adaptation of the segmentation algorithm to the data. To overcome this difficulty, we introduce a statistical approach called selective inference, and develop a framework to compute valid p-values in which the segmentation bias is properly accounted for. Although the proposed framework is potentially applicable to various segmentation algorithms, we focus in this paper on graph cut-based and threshold-based segmentation algorithms, and develop two specific methods to compute valid p-values for the segmentation results obtained by these algorithms. We prove the theoretical validity of these two methods and demonstrate their practicality by applying them to segmentation problems for medical images.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا