ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient pre-training objectives for Transformers

250   0   0.0 ( 0 )
 نشر من قبل Luca Di Liello
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Transformer architecture deeply changed the natural language processing, outperforming all previous state-of-the-art models. However, well-known Transformer models like BERT, RoBERTa, and GPT-2 require a huge compute budget to create a high quality contextualised representation. In this paper, we study several efficient pre-training objectives for Transformers-based models. By testing these objectives on different tasks, we determine which of the ELECTRA models new features is the most relevant. We confirm that Transformers pre-training is improved when the input does not contain masked tokens and that the usage of the whole output to compute the loss reduces training time. Moreover, inspired by ELECTRA, we study a model composed of two blocks; a discriminator and a simple generator based on a statistical model with no impact on the computational performances. Besides, we prove that eliminating the MASK token and considering the whole output during the loss computation are essential choices to improve performance. Furthermore, we show that it is possible to efficiently train BERT-like models using a discriminative approach as in ELECTRA but without a complex generator, which is expensive. Finally, we show that ELECTRA benefits heavily from a state-of-the-art hyper-parameters search.



قيم البحث

اقرأ أيضاً

Pre-training on larger datasets with ever increasing model size is now a proven recipe for increased performance across almost all NLP tasks. A notable exception is information retrieval, where additional pre-training has so far failed to produce con vincing results. We show that, with the right pre-training setup, this barrier can be overcome. We demonstrate this by pre-training large bi-encoder models on 1) a recently released set of 65 million synthetically generated questions, and 2) 200 million post-comment pairs from a preexisting dataset of Reddit conversations made available by pushshift.io. We evaluate on a set of information retrieval and dialogue retrieval benchmarks, showing substantial improvements over supervised baselines.
Medication recommendation is an important healthcare application. It is commonly formulated as a temporal prediction task. Hence, most existing works only utilize longitudinal electronic health records (EHRs) from a small number of patients with mult iple visits ignoring a large number of patients with a single visit (selection bias). Moreover, important hierarchical knowledge such as diagnosis hierarchy is not leveraged in the representation learning process. To address these challenges, we propose G-BERT, a new model to combine the power of Graph Neural Networks (GNNs) and BERT (Bidirectional Encoder Representations from Transformers) for medical code representation and medication recommendation. We use GNNs to represent the internal hierarchical structures of medical codes. Then we integrate the GNN representation into a transformer-based visit encoder and pre-train it on EHR data from patients only with a single visit. The pre-trained visit encoder and representation are then fine-tuned for downstream predictive tasks on longitudinal EHRs from patients with multiple visits. G-BERT is the first to bring the language model pre-training schema into the healthcare domain and it achieved state-of-the-art performance on the medication recommendation task.
112 - Zheng Chen , Xing Fan , Yuan Ling 2020
Query rewriting (QR) is an increasingly important technique to reduce customer friction caused by errors in a spoken language understanding pipeline, where the errors originate from various sources such as speech recognition errors, language understa nding errors or entity resolution errors. In this work, we first propose a neural-retrieval based approach for query rewriting. Then, inspired by the wide success of pre-trained contextual language embeddings, and also as a way to compensate for insufficient QR training data, we propose a language-modeling (LM) based approach to pre-train query embeddings on historical user conversation data with a voice assistant. In addition, we propose to use the NLU hypotheses generated by the language understanding system to augment the pre-training. Our experiments show pre-training provides rich prior information and help the QR task achieve strong performance. We also show joint pre-training with NLU hypotheses has further benefit. Finally, after pre-training, we find a small set of rewrite pairs is enough to fine-tune the QR model to outperform a strong baseline by full training on all QR training data.
While large scale pre-training has achieved great achievements in bridging the gap between vision and language, it still faces several challenges. First, the cost for pre-training is expensive. Second, there is no efficient way to handle the data noi se which degrades model performance. Third, previous methods only leverage limited image-text paired data, while ignoring richer single-modal data, which may result in poor generalization to single-modal downstream tasks. In this work, we propose an EfficientCLIP method via Ensemble Confident Learning to obtain a less noisy data subset. Extra rich non-paired single-modal text data is used for boosting the generalization of text branch. We achieve the state-of-the-art performance on Chinese cross-modal retrieval tasks with only 1/10 training resources compared to CLIP and WenLan, while showing excellent generalization to single-modal tasks, including text retrieval and text classification.
While many BERT-based cross-modal pre-trained models produce excellent results on downstream understanding tasks like image-text retrieval and VQA, they cannot be applied to generation tasks directly. In this paper, we propose XGPT, a new method of C ross-modal Generative Pre-Training for Image Captioning that is designed to pre-train text-to-image caption generators through three novel generation tasks, including Image-conditioned Masked Language Modeling (IMLM), Image-conditioned Denoising Autoencoding (IDA), and Text-conditioned Image Feature Generation (TIFG). As a result, the pre-trained XGPT can be fine-tuned without any task-specific architecture modifications to create state-of-the-art models for image captioning. Experiments show that XGPT obtains new state-of-the-art results on the benchmark datasets, including COCO Captions and Flickr30k Captions. We also use XGPT to generate new image captions as data augmentation for the image retrieval task and achieve significant improvement on all recall metrics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا