ﻻ يوجد ملخص باللغة العربية
Query rewriting (QR) is an increasingly important technique to reduce customer friction caused by errors in a spoken language understanding pipeline, where the errors originate from various sources such as speech recognition errors, language understanding errors or entity resolution errors. In this work, we first propose a neural-retrieval based approach for query rewriting. Then, inspired by the wide success of pre-trained contextual language embeddings, and also as a way to compensate for insufficient QR training data, we propose a language-modeling (LM) based approach to pre-train query embeddings on historical user conversation data with a voice assistant. In addition, we propose to use the NLU hypotheses generated by the language understanding system to augment the pre-training. Our experiments show pre-training provides rich prior information and help the QR task achieve strong performance. We also show joint pre-training with NLU hypotheses has further benefit. Finally, after pre-training, we find a small set of rewrite pairs is enough to fine-tune the QR model to outperform a strong baseline by full training on all QR training data.
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
Language model pre-training has shown promising results in various downstream tasks. In this context, we introduce a cross-modal pre-trained language model, called Speech-Text BERT (ST-BERT), to tackle end-to-end spoken language understanding (E2E SL
Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models
This paper presents a new Unified pre-trained Language Model (UniLM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirecti
BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models. Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address th