ﻻ يوجد ملخص باللغة العربية
We analyze the properties of adversarial training for learning adversarially robust halfspaces in the presence of agnostic label noise. Denoting $mathsf{OPT}_{p,r}$ as the best robust classification error achieved by a halfspace that is robust to perturbations of $ell_{p}$ balls of radius $r$, we show that adversarial training on the standard binary cross-entropy loss yields adversarially robust halfspaces up to (robust) classification error $tilde O(sqrt{mathsf{OPT}_{2,r}})$ for $p=2$, and $tilde O(d^{1/4} sqrt{mathsf{OPT}_{infty, r}} + d^{1/2} mathsf{OPT}_{infty,r})$ when $p=infty$. Our results hold for distributions satisfying anti-concentration properties enjoyed by log-concave isotropic distributions among others. We additionally show that if one instead uses a nonconvex sigmoidal loss, adversarial training yields halfspaces with an improved robust classification error of $O(mathsf{OPT}_{2,r})$ for $p=2$, and $O(d^{1/4}mathsf{OPT}_{infty, r})$ when $p=infty$. To the best of our knowledge, this is the first work to show that adversarial training provably yields robust classifiers in the presence of noise.
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift clos
We study {em online} active learning of homogeneous halfspaces in $mathbb{R}^d$ with adversarial noise where the overall probability of a noisy label is constrained to be at most $ u$. Our main contribution is a Perceptron-like online active learning
Todays state-of-the-art image classifiers fail to correctly classify carefully manipulated adversarial images. In this work, we develop a new, localized adversarial attack that generates adversarial examples by imperceptibly altering the backgrounds
Training convolutional neural networks (CNNs) with a strict Lipschitz constraint under the l_{2} norm is useful for provable adversarial robustness, interpretable gradients and stable training. While 1-Lipschitz CNNs can be designed by enforcing a 1-
In this technical report, we evaluate the adversarial robustness of a very recent method called Geometry-aware Instance-reweighted Adversarial Training[7]. GAIRAT reports state-of-the-art results on defenses to adversarial attacks on the CIFAR-10 dat