ﻻ يوجد ملخص باللغة العربية
We study {em online} active learning of homogeneous halfspaces in $mathbb{R}^d$ with adversarial noise where the overall probability of a noisy label is constrained to be at most $ u$. Our main contribution is a Perceptron-like online active learning algorithm that runs in polynomial time, and under the conditions that the marginal distribution is isotropic log-concave and $ u = Omega(epsilon)$, where $epsilon in (0, 1)$ is the target error rate, our algorithm PAC learns the underlying halfspace with near-optimal label complexity of $tilde{O}big(d cdot polylog(frac{1}{epsilon})big)$ and sample complexity of $tilde{O}big(frac{d}{epsilon} big)$. Prior to this work, existing online algorithms designed for tolerating the adversarial noise are subject to either label complexity polynomial in $frac{1}{epsilon}$, or suboptimal noise tolerance, or restrictive marginal distributions. With the additional prior knowledge that the underlying halfspace is $s$-sparse, we obtain attribute-efficient label complexity of $tilde{O}big( s cdot polylog(d, frac{1}{epsilon}) big)$ and sample complexity of $tilde{O}big(frac{s}{epsilon} cdot polylog(d) big)$. As an immediate corollary, we show that under the agnostic model where no assumption is made on the noise rate $ u$, our active learner achieves an error rate of $O(OPT) + epsilon$ with the same running time and label and sample complexity, where $OPT$ is the best possible error rate achievable by any homogeneous halfspace.
We study efficient PAC learning of homogeneous halfspaces in $mathbb{R}^d$ in the presence of malicious noise of Valiant~(1985). This is a challenging noise model and only until recently has near-optimal noise tolerance bound been established under t
This paper is concerned with computationally efficient learning of homogeneous sparse halfspaces in $mathbb{R}^d$ under noise. Though recent works have established attribute-efficient learning algorithms under various types of label noise (e.g. bound
We analyze the properties of adversarial training for learning adversarially robust halfspaces in the presence of agnostic label noise. Denoting $mathsf{OPT}_{p,r}$ as the best robust classification error achieved by a halfspace that is robust to per
We study the problem of {em properly} learning large margin halfspaces in the agnostic PAC model. In more detail, we study the complexity of properly learning $d$-dimensional halfspaces on the unit ball within misclassification error $alpha cdot math
We study the fundamental problems of agnostically learning halfspaces and ReLUs under Gaussian marginals. In the former problem, given labeled examples $(mathbf{x}, y)$ from an unknown distribution on $mathbb{R}^d times { pm 1}$, whose marginal distr