ﻻ يوجد ملخص باللغة العربية
Developing a unified multilingual model has long been a pursuit for machine translation. However, existing approaches suffer from performance degradation -- a single multilingual model is inferior to separately trained bilingual ones on rich-resource languages. We conjecture that such a phenomenon is due to interference caused by joint training with multiple languages. To accommodate the issue, we propose CIAT, an adapted Transformer model with a small parameter overhead for multilingual machine translation. We evaluate CIAT on multiple benchmark datasets, including IWSLT, OPUS-100, and WMT. Experiments show that CIAT consistently outperforms strong multilingual baselines on 64 of total 66 language directions, 42 of which see above 0.5 BLEU improvement. Our code is available at url{https://github.com/Yaoming95/CIAT}~.
Adapter modules were recently introduced as an efficient alternative to fine-tuning in NLP. Adapter tuning consists in freezing pretrained parameters of a model and injecting lightweight modules between layers, resulting in the addition of only a sma
Multilingual neural machine translation (MNMT) learns to translate multiple language pairs with a single model, potentially improving both the accuracy and the memory-efficiency of deployed models. However, the heavy data imbalance between languages
We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at
Multilingual neural machine translation (NMT) enables training a single model that supports translation from multiple source languages into multiple target languages. In this paper, we push the limits of multilingual NMT in terms of number of languag