ترغب بنشر مسار تعليمي؟ اضغط هنا

Fibro-CoSANet: Pulmonary Fibrosis Prognosis Prediction using a Convolutional Self Attention Network

99   0   0.0 ( 0 )
 نشر من قبل Shumit Saha
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Idiopathic pulmonary fibrosis (IPF) is a restrictive interstitial lung disease that causes lung function decline by lung tissue scarring. Although lung function decline is assessed by the forced vital capacity (FVC), determining the accurate progression of IPF remains a challenge. To address this challenge, we proposed Fibro-CoSANet, a novel end-to-end multi-modal learning-based approach, to predict the FVC decline. Fibro-CoSANet utilized CT images and demographic information in convolutional neural network frameworks with a stacked attention layer. Extensive experiments on the OSIC Pulmonary Fibrosis Progression Dataset demonstrated the superiority of our proposed Fibro-CoSANet by achieving the new state-of-the-art modified Laplace Log-Likelihood score of -6.68. This network may benefit research areas concerned with designing networks to improve the prognostic accuracy of IPF. The source-code for Fibro-CoSANet is available at: url{https://github.com/zabir-nabil/Fibro-CoSANet}.

قيم البحث

اقرأ أيضاً

We address the problem of supporting radiologists in the longitudinal management of lung cancer. Therefore, we proposed a deep learning pipeline, composed of four stages that completely automatized from the detection of nodules to the classification of cancer, through the detection of growth in the nodules. In addition, the pipeline integrated a novel approach for nodule growth detection, which relied on a recent hierarchical probabilistic U-Net adapted to report uncertainty estimates. Also, a second novel method was introduced for lung cancer nodule classification, integrating into a two stream 3D-CNN network the estimated nodule malignancy probabilities derived from a pretrained nodule malignancy network. The pipeline was evaluated in a longitudinal cohort and reported comparable performances to the state of art.
106 - Yuyang Xue , Jiannan Su 2019
The traditional image compressors, e.g., BPG and H.266, have achieved great image and video compression quality. Recently, Convolutional Neural Network has been used widely in image compression. We proposed an attention-based convolutional neural net work for low bit-rate compression to post-process the output of traditional image compression decoder. Across the experimental results on validation sets, the post-processing module trained by MAE and MS-SSIM losses yields the highest PSNR of 32.10 on average at the bit-rate of 0.15.
Spatial attention has been introduced to convolutional neural networks (CNNs) for improving both their performance and interpretability in visual tasks including image classification. The essence of the spatial attention is to learn a weight map whic h represents the relative importance of activations within the same layer or channel. All existing attention mechanisms are local attentions in the sense that weight maps are image-specific. However, in the medical field, there are cases that all the images should share the same weight map because the set of images record the same kind of symptom related to the same object and thereby share the same structural content. In this paper, we thus propose a novel global spatial attention mechanism in CNNs mainly for medical image classification. The global weight map is instantiated by a decision boundary between important pixels and unimportant pixels. And we propose to realize the decision boundary by a binary classifier in which the intensities of all images at a pixel are the features of the pixel. The binary classification is integrated into an image classification CNN and is to be optimized together with the CNN. Experiments on two medical image datasets and one facial expression dataset showed that with the proposed attention, not only the performance of four powerful CNNs which are GoogleNet, VGG, ResNet, and DenseNet can be improved, but also meaningful attended regions can be obtained, which is beneficial for understanding the content of images of a domain.
Diagnosis and treatment of multiple pulmonary nodules are clinically important but challenging. Prior studies on nodule characterization use solitary-nodule approaches on multiple nodular patients, which ignores the relations between nodules. In this study, we propose a multiple instance learning (MIL) approach and empirically prove the benefit to learn the relations between multiple nodules. By treating the multiple nodules from a same patient as a whole, critical relational information between solitary-nodule voxels is extracted. To our knowledge, it is the first study to learn the relations between multiple pulmonary nodules. Inspired by recent advances in natural language processing (NLP) domain, we introduce a self-attention transformer equipped with 3D CNN, named {NoduleSAT}, to replace typical pooling-based aggregation in multiple instance learning. Extensive experiments on lung nodule false positive reduction on LUNA16 database, and malignancy classification on LIDC-IDRI database, validate the effectiveness of the proposed method.
With the development of medical computer-aided diagnostic systems, pulmonary artery-vein(A/V) separation plays a crucial role in assisting doctors in preoperative planning for lung cancer surgery. However, distinguishing arterial from venous irrigati on in chest CT images remains a challenge due to the similarity and complex structure of the arteries and veins. We propose a novel method for automatic separation of pulmonary arteries and veins from chest CT images. The method consists of three parts. First, global connection information and local feature information are used to construct a complete topological tree and ensure the continuity of vessel reconstruction. Second, the Twin-Pipe network proposed can automatically learn the differences between arteries and veins at different levels to reduce classification errors caused by changes in terminal vessel characteristics. Finally, the topology optimizer considers interbranch and intrabranch topological relationships to maintain spatial consistency to avoid the misclassification of A/V irrigations. We validate the performance of the method on chest CT images. Compared with manual classification, the proposed method achieves an average accuracy of 96.2% on noncontrast chest CT. In addition, the method has been proven to have good generalization, that is, the accuracies of 93.8% and 94.8% are obtained for CT scans from other devices and other modes, respectively. The result of pulmonary artery-vein obtained by the proposed method can provide better assistance for preoperative planning of lung cancer surgery.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا