ﻻ يوجد ملخص باللغة العربية
Idiopathic pulmonary fibrosis (IPF) is a restrictive interstitial lung disease that causes lung function decline by lung tissue scarring. Although lung function decline is assessed by the forced vital capacity (FVC), determining the accurate progression of IPF remains a challenge. To address this challenge, we proposed Fibro-CoSANet, a novel end-to-end multi-modal learning-based approach, to predict the FVC decline. Fibro-CoSANet utilized CT images and demographic information in convolutional neural network frameworks with a stacked attention layer. Extensive experiments on the OSIC Pulmonary Fibrosis Progression Dataset demonstrated the superiority of our proposed Fibro-CoSANet by achieving the new state-of-the-art modified Laplace Log-Likelihood score of -6.68. This network may benefit research areas concerned with designing networks to improve the prognostic accuracy of IPF. The source-code for Fibro-CoSANet is available at: url{https://github.com/zabir-nabil/Fibro-CoSANet}.
We address the problem of supporting radiologists in the longitudinal management of lung cancer. Therefore, we proposed a deep learning pipeline, composed of four stages that completely automatized from the detection of nodules to the classification
The traditional image compressors, e.g., BPG and H.266, have achieved great image and video compression quality. Recently, Convolutional Neural Network has been used widely in image compression. We proposed an attention-based convolutional neural net
Spatial attention has been introduced to convolutional neural networks (CNNs) for improving both their performance and interpretability in visual tasks including image classification. The essence of the spatial attention is to learn a weight map whic
Diagnosis and treatment of multiple pulmonary nodules are clinically important but challenging. Prior studies on nodule characterization use solitary-nodule approaches on multiple nodular patients, which ignores the relations between nodules. In this
With the development of medical computer-aided diagnostic systems, pulmonary artery-vein(A/V) separation plays a crucial role in assisting doctors in preoperative planning for lung cancer surgery. However, distinguishing arterial from venous irrigati