ترغب بنشر مسار تعليمي؟ اضغط هنا

Relational Learning between Multiple Pulmonary Nodules via Deep Set Attention Transformers

206   0   0.0 ( 0 )
 نشر من قبل Jiancheng Yang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Diagnosis and treatment of multiple pulmonary nodules are clinically important but challenging. Prior studies on nodule characterization use solitary-nodule approaches on multiple nodular patients, which ignores the relations between nodules. In this study, we propose a multiple instance learning (MIL) approach and empirically prove the benefit to learn the relations between multiple nodules. By treating the multiple nodules from a same patient as a whole, critical relational information between solitary-nodule voxels is extracted. To our knowledge, it is the first study to learn the relations between multiple pulmonary nodules. Inspired by recent advances in natural language processing (NLP) domain, we introduce a self-attention transformer equipped with 3D CNN, named {NoduleSAT}, to replace typical pooling-based aggregation in multiple instance learning. Extensive experiments on lung nodule false positive reduction on LUNA16 database, and malignancy classification on LIDC-IDRI database, validate the effectiveness of the proposed method.

قيم البحث

اقرأ أيضاً

We address the problem of supporting radiologists in the longitudinal management of lung cancer. Therefore, we proposed a deep learning pipeline, composed of four stages that completely automatized from the detection of nodules to the classification of cancer, through the detection of growth in the nodules. In addition, the pipeline integrated a novel approach for nodule growth detection, which relied on a recent hierarchical probabilistic U-Net adapted to report uncertainty estimates. Also, a second novel method was introduced for lung cancer nodule classification, integrating into a two stream 3D-CNN network the estimated nodule malignancy probabilities derived from a pretrained nodule malignancy network. The pipeline was evaluated in a longitudinal cohort and reported comparable performances to the state of art.
103 - Yamin Li , Jiancheng Yang , Yi Xu 2020
Follow-up serves an important role in the management of pulmonary nodules for lung cancer. Imaging diagnostic guidelines with expert consensus have been made to help radiologists make clinical decision for each patient. However, tumor growth is such a complicated process that it is difficult to stratify high-risk nodules from low-risk ones based on morphologic characteristics. On the other hand, recent deep learning studies using convolutional neural networks (CNNs) to predict the malignancy score of nodules, only provides clinicians with black-box predictions. To this end, we propose a unified framework, named Nodule Follow-Up Prediction Network (NoFoNet), which predicts the growth of pulmonary nodules with high-quality visual appearances and accurate quantitative results, given any time interval from baseline observations. It is achieved by predicting future displacement field of each voxel with a WarpNet. A TextureNet is further developed to refine textural details of WarpNet outputs. We also introduce techniques including Temporal Encoding Module and Warp Segmentation Loss to encourage time-aware and shape-aware representation learning. We build an in-house follow-up dataset from two medical centers to validate the effectiveness of the proposed method. NoFoNet significantly outperforms direct prediction by a U-Net in terms of visual quality; more importantly, it demonstrates accurate differentiating performance between high- and low-risk nodules. Our promising results suggest the potentials in computer aided intervention for lung nodule management.
Accurate characterisation of visual attributes such as spiculation, lobulation, and calcification of lung nodules is critical in cancer management. The characterisation of these attributes is often subjective, which may lead to high inter- and intra- observer variability. Furthermore, lung nodules are often heterogeneous in the cross-sectional image slices of a 3D volume. Current state-of-the-art methods that score multiple attributes rely on deep learning-based multi-task learning (MTL) schemes. These methods, however, extract shared visual features across attributes and then examine each attribute without explicitly leveraging their inherent intercorrelations. Furthermore, current methods either treat each slice with equal importance without considering their relevance or heterogeneity, which limits performance. In this study, we address these challenges with a new convolutional neural network (CNN)-based MTL model that incorporates multiple attention-based learning modules to simultaneously score 9 visual attributes of lung nodules in computed tomography (CT) image volumes. Our model processes entire nodule volumes of arbitrary depth and uses a slice attention module to filter out irrelevant slices. We also introduce cross-attribute and attribute specialisation attention modules that learn an optimal amalgamation of meaningful representations to leverage relationships between attributes. We demonstrate that our model outperforms previous state-of-the-art methods at scoring attributes using the well-known public LIDC-IDRI dataset of pulmonary nodules from over 1,000 patients. Our model also performs competitively when repurposed for benign-malignant classification. Our attention modules also provide easy-to-interpret weights that offer insights into the predictions of the model.
94 - Wei Wu , Xukun Li , Peng Du 2019
We developed a deep learning model-based system to automatically generate a quantitative Computed Tomography (CT) diagnostic report for Pulmonary Tuberculosis (PTB) cases.501 CT imaging datasets from 223 patients with active PTB were collected, and a nother 501 cases from a healthy population served as negative samples.2884 lesions of PTB were carefully labeled and classified manually by professional radiologists.Three state-of-the-art 3D convolution neural network (CNN) models were trained and evaluated in the inspection of PTB CT images. Transfer learning method was also utilized during this process. The best model was selected to annotate the spatial location of lesions and classify them into miliary, infiltrative, caseous, tuberculoma and cavitary types simultaneously.Then the Noisy-Or Bayesian function was used to generate an overall infection probability.Finally, a quantitative diagnostic report was exported.The results showed that the recall and precision rates, from the perspective of a single lesion region of PTB, were 85.9% and 89.2% respectively. The overall recall and precision rates,from the perspective of one PTB case, were 98.7% and 93.7%, respectively. Moreover, the precision rate of the PTB lesion type classification was 90.9%.The new method might serve as an effective reference for decision making by clinical doctors.
Purpose: To develop a machine learning model to classify the severity grades of pulmonary edema on chest radiographs. Materials and Methods: In this retrospective study, 369,071 chest radiographs and associated radiology reports from 64,581 (mean a ge, 51.71; 54.51% women) patients from the MIMIC-CXR chest radiograph dataset were included. This dataset was split into patients with and without congestive heart failure (CHF). Pulmonary edema severity labels from the associated radiology reports were extracted from patients with CHF as four different ordinal levels: 0, no edema; 1, vascular congestion; 2, interstitial edema; and 3, alveolar edema. Deep learning models were developed using two approaches: a semi-supervised model using a variational autoencoder and a pre-trained supervised learning model using a dense neural network. Receiver operating characteristic curve analysis was performed on both models. Results: The area under the receiver operating characteristic curve (AUC) for differentiating alveolar edema from no edema was 0.99 for the semi-supervised model and 0.87 for the pre-trained models. Performance of the algorithm was inversely related to the difficulty in categorizing milder states of pulmonary edema (shown as AUCs for semi-supervised model and pre-trained model, respectively): 2 versus 0, 0.88 and 0.81; 1 versus 0, 0.79 and 0.66; 3 versus 1, 0.93 and 0.82; 2 versus 1, 0.69 and 0.73; and, 3 versus 2, 0.88 and 0.63. Conclusion: Deep learning models were trained on a large chest radiograph dataset and could grade the severity of pulmonary edema on chest radiographs with high performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا