ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Exploration for Open-World Navigation with Latent Goal Models

187   0   0.0 ( 0 )
 نشر من قبل Dhruv Shah
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments. At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory. We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration. Trained on a large offline dataset of prior experience, the model acquires a representation of visual goals that is robust to task-irrelevant distractors. We demonstrate our method on a mobile ground robot in open-world exploration scenarios. Given an image of a goal that is up to 80 meters away, our method leverages its representation to explore and discover the goal in under 20 minutes, even amidst previously-unseen obstacles and weather conditions. We encourage the reader to visit the project website for videos of our experiments and demonstrations https://sites.google.com/view/recon-robot



قيم البحث

اقرأ أيضاً

We propose a learning-based navigation system for reaching visually indicated goals and demonstrate this system on a real mobile robot platform. Learning provides an appealing alternative to conventional methods for robotic navigation: instead of rea soning about environments in terms of geometry and maps, learning can enable a robot to learn about navigational affordances, understand what types of obstacles are traversable (e.g., tall grass) or not (e.g., walls), and generalize over patterns in the environment. However, unlike conventional planning algorithms, it is harder to change the goal for a learned policy during deployment. We propose a method for learning to navigate towards a goal image of the desired destination. By combining a learned policy with a topological graph constructed out of previously observed data, our system can determine how to reach this visually indicated goal even in the presence of variable appearance and lighting. Three key insights, waypoint proposal, graph pruning and negative mining, enable our method to learn to navigate in real-world environments using only offline data, a setting where prior methods struggle. We instantiate our method on a real outdoor ground robot and show that our system, which we call ViNG, outperforms previously-proposed methods for goal-conditioned reinforcement learning, including other methods that incorporate reinforcement learning and search. We also study how sysName generalizes to unseen environments and evaluate its ability to adapt to such an environment with growing experience. Finally, we demonstrate ViNG on a number of real-world applications, such as last-mile delivery and warehouse inspection. We encourage the reader to visit the project website for videos of our experiments and demonstrations sites.google.com/view/ving-robot.
We train embodied neural networks to plan and navigate unseen complex 3D environments, emphasising real-world deployment. Rather than requiring prior knowledge of the agent or environment, the planner learns to model the state transitions and rewards . To avoid the potentially hazardous trial-and-error of reinforcement learning, we focus on differentiable planners such as Value Iteration Networks (VIN), which are trained offline from safe expert demonstrations. Although they work well in small simulations, we address two major limitations that hinder their deployment. First, we observed that current differentiable planners struggle to plan long-term in environments with a high branching complexity. While they should ideally learn to assign low rewards to obstacles to avoid collisions, we posit that the constraints imposed on the network are not strong enough to guarantee the network to learn sufficiently large penalties for every possible collision. We thus impose a structural constraint on the value iteration, which explicitly learns to model any impossible actions. Secondly, we extend the model to work with a limited perspective camera under translation and rotation, which is crucial for real robot deployment. Many VIN-like planners assume a 360 degrees or overhead view without rotation. In contrast, our method uses a memory-efficient lattice map to aggregate CNN embeddings of partial observations, and models the rotational dynamics explicitly using a 3D state-space grid (translation and rotation). Our proposals significantly improve semantic navigation and exploration on several 2D and 3D environments, succeeding in settings that are otherwise challenging for this class of methods. As far as we know, we are the first to successfully perform differentiable planning on the difficult Active Vision Dataset, consisting of real images captured from a robot.
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments. End-to-end learning-based navigation methods struggle at this task as they are ineffective at explor ation and long-term planning. We propose a modular system called, `Goal-Oriented Semantic Exploration which builds an episodic semantic map and uses it to explore the environment efficiently based on the goal object category. Empirical results in visually realistic simulation environments show that the proposed model outperforms a wide range of baselines including end-to-end learning-based methods as well as modular map-based methods and led to the winning entry of the CVPR-2020 Habitat ObjectNav Challenge. Ablation analysis indicates that the proposed model learns semantic priors of the relative arrangement of objects in a scene, and uses them to explore efficiently. Domain-agnostic module design allow us to transfer our model to a mobile robot platform and achieve similar performance for object goal navigation in the real-world.
Self-supervised goal proposal and reaching is a key component for exploration and efficient policy learning algorithms. Such a self-supervised approach without access to any oracle goal sampling distribution requires deep exploration and commitment s o that long horizon plans can be efficiently discovered. In this paper, we propose an exploration framework, which learns a dynamics-aware manifold of reachable states. For a goal, our proposed method deterministically visits a state at the current frontier of reachable states (commitment/reaching) and then stochastically explores to reach the goal (exploration). This allocates exploration budget near the frontier of the reachable region instead of its interior. We target the challenging problem of policy learning from initial and goal states specified as images, and do not assume any access to the underlying ground-truth states of the robot and the environment. To keep track of reachable latent states, we propose a distance-conditioned reachability network that is trained to infer whether one state is reachable from another within the specified latent space distance. Given an initial state, we obtain a frontier of reachable states from that state. By incorporating a curriculum for sampling easier goals (closer to the start state) before more difficult goals, we demonstrate that the proposed self-supervised exploration algorithm, superior performance compared to existing baselines on a set of challenging robotic environments.https://sites.google.com/view/leaf-exploration
Recent work has presented embodied agents that can navigate to point-goal targets in novel indoor environments with near-perfect accuracy. However, these agents are equipped with idealized sensors for localization and take deterministic actions. This setting is practically sterile by comparison to the dirty reality of noisy sensors and actuations in the real world -- wheels can slip, motion sensors have error, actuations can rebound. In this work, we take a step towards this noisy reality, developing point-goal navigation agents that rely on visual estimates of egomotion under noisy action dynamics. We find these agents outperform naive adaptions of current point-goal agents to this setting as well as those incorporating classic localization baselines. Further, our model conceptually divides learning agent dynamics or odometry (where am I?) from task-specific navigation policy (where do I want to go?). This enables a seamless adaption to changing dynamics (a different robot or floor type) by simply re-calibrating the visual odometry model -- circumventing the expense of re-training of the navigation policy. Our agent was the runner-up in the PointNav track of CVPR 2020 Habitat Challenge.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا