ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Inductive Bias of Masked Language Modeling: From Statistical to Syntactic Dependencies

75   0   0.0 ( 0 )
 نشر من قبل Tianyi Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how masking and predicting tokens in an unsupervised fashion can give rise to linguistic structures and downstream performance gains. Recent theories have suggested that pretrained language models acquire useful inductive biases through masks that implicitly act as cloze reductions for downstream tasks. While appealing, we show that the success of the random masking strategy used in practice cannot be explained by such cloze-like masks alone. We construct cloze-like masks using task-specific lexicons for three different classification datasets and show that the majority of pretrained performance gains come from generic masks that are not associated with the lexicon. To explain the empirical success of these generic masks, we demonstrate a correspondence between the Masked Language Model (MLM) objective and existing methods for learning statistical dependencies in graphical models. Using this, we derive a method for extracting these learned statistical dependencies in MLMs and show that these dependencies encode useful inductive biases in the form of syntactic structures. In an unsupervised parsing evaluation, simply forming a minimum spanning tree on the implied statistical dependence structure outperforms a classic method for unsupervised parsing (58.74 vs. 55.91 UUAS).



قيم البحث

اقرأ أيضاً

Masked language modeling (MLM) is one of the key sub-tasks in vision-language pretraining. In the cross-modal setting, tokens in the sentence are masked at random, and the model predicts the masked tokens given the image and the text. In this paper, we observe several key disadvantages of MLM in this setting. First, as captions tend to be short, in a third of the sentences no token is sampled. Second, the majority of masked tokens are stop-words and punctuation, leading to under-utilization of the image. We investigate a range of alternative masking strategies specific to the cross-modal setting that address these shortcomings, aiming for better fusion of text and image in the learned representation. When pre-training the LXMERT model, our alternative masking strategies consistently improve over the original masking strategy on three downstream tasks, especially in low resource settings. Further, our pre-training approach substantially outperforms the baseline model on a prompt-based probing task designed to elicit image objects. These results and our analysis indicate that our method allows for better utilization of the training data.
396 - Kaitao Song , Xu Tan , Tao Qin 2019
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsk ed Sequence to Sequence pre-training (MASS) for the encoder-decoder based language generation tasks. MASS adopts the encoder-decoder framework to reconstruct a sentence fragment given the remaining part of the sentence: its encoder takes a sentence with randomly masked fragment (several consecutive tokens) as input, and its decoder tries to predict this masked fragment. In this way, MASS can jointly train the encoder and decoder to develop the capability of representation extraction and language modeling. By further fine-tuning on a variety of zero/low-resource language generation tasks, including neural machine translation, text summarization and conversational response generation (3 tasks and totally 8 datasets), MASS achieves significant improvements over the baselines without pre-training or with other pre-training methods. Specially, we achieve the state-of-the-art accuracy (37.5 in terms of BLEU score) on the unsupervised English-French translation, even beating the early attention-based supervised model.
Since language models are used to model a wide variety of languages, it is natural to ask whether the neural architectures used for the task have inductive biases towards modeling particular types of languages. Investigation of these biases has prove d complicated due to the many variables that appear in the experimental setup. Languages vary in many typological dimensions, and it is difficult to single out one or two to investigate without the others acting as confounders. We propose a novel method for investigating the inductive biases of language models using artificial languages. These languages are constructed to allow us to create parallel corpora across languages that differ only in the typological feature being investigated, such as word order. We then use them to train and test language models. This constitutes a fully controlled causal framework, and demonstrates how grammar engineering can serve as a useful tool for analyzing neural models. Using this method, we find that commonly used neural architectures exhibit different inductive biases: LSTMs display little preference with respect to word ordering, while transformers display a clear preference for some orderings over others. Further, we find that neither the inductive bias of the LSTM nor that of the transformer appears to reflect any tendencies that we see in attested natural languages.
Dropout is a simple but effective technique for learning in neural networks and other settings. A sound theoretical understanding of dropout is needed to determine when dropout should be applied and how to use it most effectively. In this paper we co ntinue the exploration of dropout as a regularizer pioneered by Wager, et.al. We focus on linear classification where a convex proxy to the misclassification loss (i.e. the logistic loss used in logistic regression) is minimized. We show: (a) when the dropout-regularized criterion has a unique minimizer, (b) when the dropout-regularization penalty goes to infinity with the weights, and when it remains bounded, (c) that the dropout regularization can be non-monotonic as individual weights increase from 0, and (d) that the dropout regularization penalty may not be convex. This last point is particularly surprising because the combination of dropout regularization with any convex loss proxy is always a convex function. In order to contrast dropout regularization with $L_2$ regularization, we formalize the notion of when different sources are more compatible with different regularizers. We then exhibit distributions that are provably more compatible with dropout regularization than $L_2$ regularization, and vice versa. These sources provide additional insight into how the inductive biases of dropout and $L_2$ regularization differ. We provide some similar results for $L_1$ regularization.
Exposure bias describes the phenomenon that a language model trained under the teacher forcing schema may perform poorly at the inference stage when its predictions are conditioned on its previous predictions unseen from the training corpus. Recently , several generative adversarial networks (GANs) and reinforcement learning (RL) methods have been introduced to alleviate this problem. Nonetheless, a common issue in RL and GANs training is the sparsity of reward signals. In this paper, we adopt two simple strategies, multi-range reinforcing, and multi-entropy sampling, to amplify and denoise the reward signal. Our model produces an improvement over competing models with regards to BLEU scores and road exam, a new metric we designed to measure the robustness against exposure bias in language models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا