ﻻ يوجد ملخص باللغة العربية
The Super Tau-Charm Facility (STCF) is a future electron-positron collider proposed in China with a peak luminosity of above 0.5$times$10$^{35}$ cm$^{-2}$s$^{-1}$ and center-of-mass energy ranging from 2 to 7 GeV. An excellent particle identification (PID) capability is one of the most important requirements for the detector at the STCF. A 3$sigma$ $pi$/K separation power at the momentum of up to 2 GeV/c is required within the detector acceptance. A DIRC-like time-of-flight (DTOF) detector is proposed to meet the PID requirement for the endcap region of the STCF. The conceptual design of the DTOF detector and its geometry optimization is herein presented. The PID performance of the detector is studied using Geant4 simulation. With a proper reconstruction algorithm, an overall time resolution of ~50 ps is achieved for the detector with an optimum geometry when convoluting contributions from all other sources, including the transit time spread (TTS) of the photodetector, electronic timing accuracy, and an assumed precision (~40 ps) of the event start time. A $pi$/K separation power of better than 4$sigma$ at the momentum of 2 GeV/c is achieved over the entire sensitive area of the DTOF detector, thereby fulfilling the physics requirement of the PID detector for the experiment at the STCF.
We present the final results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a full-scale prototype of the particle identification system for the SuperB experiment [1], and comprises 1/12 of the
A prototype of DIRC-like Time-of-Flight detector (DTOF), including a pico-second time measurement electronics, is developed and tested preliminarily. The basic structure of DTOF is composed of a fused silica radiator connected to fast micro-channel p
TORCH is a time-of-flight detector that is being developed for the Upgrade II of the LHCb experiment, with the aim of providing charged particle identification over the momentum range 2-10 GeV/c. A small-scale TORCH demonstrator with customised reado
The NA61 Experiment at CERN SPS is a large acceptance hadron spectrometer, aimed to studying of hadron-hadron, hadron-nucleus, and nucleus-nucleus interactions in a fixed target environment. The present paper discusses the construction and performanc
The PANDA experiment is one of the four large experiments being built at FAIR in Darmstadt. It will use a cooled antiproton beam on a fixed target within the momentum range of 1.5 to 15 GeV/c to address questions of strong QCD, where the coupling con