ﻻ يوجد ملخص باللغة العربية
A prototype of DIRC-like Time-of-Flight detector (DTOF), including a pico-second time measurement electronics, is developed and tested preliminarily. The basic structure of DTOF is composed of a fused silica radiator connected to fast micro-channel plate PMTs (MCP-PMT), and readout by a dedicated FPGA (Field Programmable Gate Array) based front-end electronics. The full electronics chain consists of a programmable differential amplifier, a dual-threshold differential discriminator, and a timestamp Time-to-Digital convertor. By splitting a MCP-PMT output signal into two identical electronics chains, the coincidence time resolution (CTR) of pure electronics was measured as 5.6 ps. By the beam test in H4 (150GeV/c, Muon) at CERN, the intrinsic CTR of the whole detector prototype reaches 15.0 ps without using time-amplitude correction. The test results demonstrate that the FPGA based front-end electronics could achieve an excellent time performance for TOF detectors. It is very compact, cost effective with a high multi-channel capacity and short measurement dead time, which is very suitable for practical applications of large-scale high performance TOF detectors in particle physics spectrometer.
A high-performance time-of-flight (TOF) MRPC wall is being built for the CBM experiment at FAIR for charged hadron identification. The detector control system for the TOF system will be based on EPICS. All components like power supplies for low and h
The Super Tau-Charm Facility (STCF) is a future electron-positron collider proposed in China with a peak luminosity of above 0.5$times$10$^{35}$ cm$^{-2}$s$^{-1}$ and center-of-mass energy ranging from 2 to 7 GeV. An excellent particle identification
In this article it is presented an FPGA based $M$ulti-$V$oltage $T$hreshold (MVT) system which allows of sampling fast signals ($1-2$ ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measureme
A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of th
In this contribution we present a new concept of the large acceptance detector systems based on organic scintillators which may allow for simultaneous diagnostic of large fraction of the human body. Novelty of the concept lies in employing large bloc