ﻻ يوجد ملخص باللغة العربية
Topological phases feature robust edge states that are protected against the effects of defects and disorder. The robustness of these states presents opportunities to design technologies that are tolerant to fabrication errors and resilient to environmental fluctuations. While most topological phases rely on conservative, or Hermitian, couplings, recent theoretical efforts have combined conservative and dissipative couplings to propose new topological phases for ultracold atoms and for photonics. However, the topological phases that arise due to purely dissipative couplings remain largely unexplored. Here we realize dissipatively coupl
A remarkable property of quantum mechanics in two-dimensional (2D) space is its ability to support anyons, particles that are neither fermions nor bosons. Theory predicts that these exotic excitations can be realized as bound states confined near top
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom
Much of the recent enthusiasm directed towards topological insulators as a new state of matter is motivated by their hallmark feature of protected chiral edge states. In fermionic systems, Kramers degeneracy gives rise to these entities in the presen
The concept of synthetic dimensions, which has enabled the study of higher-dimensional physics on lower-dimensional physical structures, has generated significant recent interest in many branches of science ranging from ultracold-atomic physics to ph
The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered