ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermionic time-reversal symmetry in a photonic topological insulator

97   0   0.0 ( 0 )
 نشر من قبل Alexander Szameit
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Much of the recent enthusiasm directed towards topological insulators as a new state of matter is motivated by their hallmark feature of protected chiral edge states. In fermionic systems, Kramers degeneracy gives rise to these entities in the presence of time-reversal symmetry (TRS). In contrast, bosonic systems obeying TRS are generally assumed to be fundamentally precluded from supporting edge states. In this work, we dispel this perception and experimentally demonstrate counter-propagating chiral states at the edge of a time-reversal-symmetric photonic waveguide structure. The pivotal step in our approach is encoding the effective spin of the propagating states as a degree of freedom of the underlying waveguide lattice, such that our photonic topological insulator is characterised by a $mathbb{Z}_2$-type invariant. Our findings allow for fermionic properties to be harnessed in bosonic systems, thereby opening new avenues for topological physics in photonics as well as acoustics, mechanics and even matter waves.



قيم البحث

اقرأ أيضاً

295 - Haoran Xue , Fei Gao , Yang Yu 2018
The discovery of photonic topological insulators (PTIs) has opened the door to fundamentally new topological states of light.Current time-reversal-invariant PTIs emulate either the quantum spin Hall (QSH) effect or the quantum valley Hall (QVH) effec t in condensed-matter systems, in order to achieve topological transport of photons whose propagation is predetermined by either photonic pseudospin (abbreviated as spin) or valley. Here we demonstrate a new class of PTIs, whose topological phase is not determined solely by spin or valley, but is controlled by the competition between their induced gauge fields. Such a competition is enabled by tuning the strengths of spin-orbit coupling (SOC) and inversion-symmetry breaking in a single PTI. An unprecedented topological transition between QSH and QVH phases that is hard to achieve in condensed-matter systems is demonstrated. Our study merges the emerging fields of spintronics and valleytronics in the same photonic platform, and offers novel PTIs with reconfigurable topological phases.
Topological phases feature robust edge states that are protected against the effects of defects and disorder. The robustness of these states presents opportunities to design technologies that are tolerant to fabrication errors and resilient to enviro nmental fluctuations. While most topological phases rely on conservative, or Hermitian, couplings, recent theoretical efforts have combined conservative and dissipative couplings to propose new topological phases for ultracold atoms and for photonics. However, the topological phases that arise due to purely dissipative couplings remain largely unexplored. Here we realize dissipatively coupl
We describe some applications of group- and bundle-theoretic methods in solid state physics, showing how symmetries lead to a proof of the localization of electrons in gapped crystalline solids, as e.g. insulators and semiconductors. We shortly revie w the Bloch-Floquet decomposition of periodic operators, and the related concepts of Bloch frames and composite Wannier functions. We show that the latter are almost-exponentially localized if and only if there exists a smooth periodic Bloch frame, and that the obstruction to the latter condition is the triviality of a Hermitian vector bundle, called the Bloch bundle. The role of additional $mathbb{Z}_2$-symmetries, as time-reversal and space-reflection symmetry, is discussed, showing how time-reversal symmetry implies the triviality of the Bloch bundle, both in the bosonic and in the fermionic case. Moreover, the same $mathbb{Z}_2$-symmetry allows to define a finer notion of isomorphism and, consequently, to define new topological invariants, which agree with the indices introduced by Fu, Kane and Mele in the context of topological insulators.
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many inter esting phenomena, most notably topological insulators and the Haldane phase of quantum magnets. Here, we demonstrate that such TRS-protected effects are fundamentally unstable against coupling to an environment. Irrespective of the microscopic symmetries, interactions between a quantum system and its surroundings facilitate processes which would be forbidden by TRS in an isolated system. This leads not only to entanglement entropy production and the emergence of macroscopic irreversibility, but also to the demise of TRS-protected phenomena, including those associated with certain symmetry-protected topological phases. Our results highlight the enigmatic nature of TRS in quantum mechanics, and elucidate potential challenges in utilising topological systems for quantum technologies.
We consider a natural generalization of the lattice model for a periodic array of two layers, A and B, of spinless electrons proposed by Fu [Phys. Rev. Lett. 106, 106802 (2011)] as a prototype for a crystalline insulator. This model has time-reversal symmetry and broken inversion symmetry. We show that when the intralayer next-nearest-neighbor hoppings ta2, a = A, B vanish, this model supports a Weyl semimetal phase for a wide range of the remaining model parameters. When the effect of ta2 is considered, topological crystalline insulating phases take place within the Weyl semimetal one. By mapping to an effective Weyl Hamiltonian we derive some analytical results for the phase diagram as well as for the structure of the nodes in the spectrum of the Weyl semimetal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا