ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder in dissipation-induced topological states: Evidence for a different type of localization transition

161   0   0.0 ( 0 )
 نشر من قبل Alon Beck
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered to drive the system into a nontrivial quantum coherent steady state? In this work we shed light on this issue by studying the effect of disorder on recently-introduced dissipation-induced Chern topological states, and examining the eigenmodes of the Hermitian steady state density matrix or entanglement Hamiltonian. We find that, similarly to equilibrium, each Landau band has a single delocalized level near its center. However, using three different finite size scaling methods we show that the critical exponent $ u$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics. This indicates a different type of nonequilibrium quantum critical universality class accessible in cold-atom experiments.



قيم البحث

اقرأ أيضاً

Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as Anderson localization and arrests diffusion of classical particles in disordered potentials. In time-periodic Floquet lattices, exponential localization in a periodically driven quantum system similarly arrests diffusion of its classically chaotic counterpart in the action-angle space. Here we demonstrate that nonlinear optical response allows for clear detection of the disorder-induced phase transition between delocalized and localized states. The optical signature of the transition is the emergence of symmetry-forbidden even-order harmonics: these harmonics are enabled by Anderson-type localization and arise for sufficiently strong disorder even when the overall charge distribution in the field-free system spatially symmetric. The ratio of even to odd harmonic intensities as a function of disorder maps out the phase transition even when the associated changes in the band structure are negligibly small.
While many-body localization (MBL) is a well-established phenomenon in one-dimension, the fate of higher-dimensional strongly disordered systems in the infinite-time limit is a topic of current debate. The latest experiments as well as several recent numerical studies indicate that such systems behave many-body localized -- at least on practically relevant time scales. However, thus far, theoretical approaches have been unable to quantitatively reproduce experimentally measured MBL-to-thermal transition points, an important requirement to demonstrate their validity. Here, we develop a formalism to apply fermionic quantum circuits combined with automatic differentiation to simulate two-dimensional MBL systems realized in optical lattice experiments with fermions. Using entanglement-based features, we obtain a phase transition point in excellent agreement with the experimentally measured value. We argue that our approach best captures the underlying charge-density-wave experiments and calculate other quantities which can be compared to future experiments, such as the mean localization lengths.
We report here the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a diss ipation driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.
We study the effect of strong disorder on topology and entanglement in quench dynamics. Although disorder-induced topological phases have been well studied in equilibrium, the disorder-induced topology in quench dynamics has not been explored. In thi s work, we predict a disorder-induced topology of post-quench states characterized by the quantized dynamical Chern number and the crossings in the entanglement spectrum in $(1+1)$ dimensions. The dynamical Chern number undergoes transitions from zero to unity, and back to zero when increasing the disorder strength. The boundaries between different dynamical Chern numbers are determined by delocalized critical points in the post-quench Hamiltonian with the strong disorder. An experimental realization in quantum walks is discussed.
Recent study predicts that structural disorder, serving as a bridge connecting a crystalline material to an amorphous material, can induce a topological insulator from a trivial phase. However, to experimentally observe such a topological phase trans ition is very challenging due to the difficulty in controlling structural disorder in a quantum material. Given experimental realization of randomly positioned Rydberg atoms, such a system is naturally suited to studying structural disorder induced topological phase transitions and topological amorphous phases. Motivated by the development, we study topological phases in an experimentally accessible one-dimensional amorphous Rydberg atom chain with random atom configurations. In the single-particle level, we find symmetry-protected topological amorphous insulators and a structural disorder induced topological phase transition, indicating that Rydberg atoms provide an ideal platform to experimentally observe the phenomenon using state-of-the-art technologies. Furthermore, we predict the existence of a gapless symmetry-protected topological phase of interacting bosons in the experimentally accessible system. The resultant many-body topological amorphous phase is characterized by a $mathbb{Z}_2$ invariant and the density distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا