ترغب بنشر مسار تعليمي؟ اضغط هنا

Incentivizing Exploration in Linear Bandits under Information Gap

117   0   0.0 ( 0 )
 نشر من قبل Huazheng Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of incentivizing exploration for myopic users in linear bandits, where the users tend to exploit arm with the highest predicted reward instead of exploring. In order to maximize the long-term reward, the system offers compensation to incentivize the users to pull the exploratory arms, with the goal of balancing the trade-off among exploitation, exploration and compensation. We consider a new and practically motivated setting where the context features observed by the user are more informative than those used by the system, e.g., features based on users private information are not accessible by the system. We propose a new method to incentivize exploration under such information gap, and prove that the method achieves both sublinear regret and sublinear compensation. We theoretical and empirically analyze the added compensation due to the information gap, compared with the case that the system has access to the same context features as the user, i.e., without information gap. We also provide a compensation lower bound of our problem.



قيم البحث

اقرأ أيضاً

We study two randomized algorithms for generalized linear bandits, GLM-TSL and GLM-FPL. GLM-TSL samples a generalized linear model (GLM) from the Laplace approximation to the posterior distribution. GLM-FPL fits a GLM to a randomly perturbed history of past rewards. We prove $tilde{O}(d sqrt{n log K})$ bounds on the $n$-round regret of GLM-TSL and GLM-FPL, where $d$ is the number of features and $K$ is the number of arms. The regret bound of GLM-TSL improves upon prior work and the regret bound of GLM-FPL is the first of its kind. We apply both GLM-TSL and GLM-FPL to logistic and neural network bandits, and show that they perform well empirically. In more complex models, GLM-FPL is significantly faster. Our results showcase the role of randomization, beyond sampling from the posterior, in exploration.
We propose a new online algorithm for minimizing the cumulative regret in stochastic linear bandits. The key idea is to build a perturbed history, which mixes the history of observed rewards with a pseudo-history of randomly generated i.i.d. pseudo-r ewards. Our algorithm, perturbed-history exploration in a linear bandit (LinPHE), estimates a linear model from its perturbed history and pulls the arm with the highest value under that model. We prove a $tilde{O}(d sqrt{n})$ gap-free bound on the expected $n$-round regret of LinPHE, where $d$ is the number of features. Our analysis relies on novel concentration and anti-concentration bounds on the weighted sum of Bernoulli random variables. To show the generality of our design, we extend LinPHE to a logistic reward model. We evaluate both algorithms empirically and show that they are practical.
Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandits unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed ban dit problem with safety constraints that depend (linearly) on an unknown parameter vector. As such, the learner is unable to identify all safe actions and must act conservatively in ensuring that her actions satisfy the safety constraint at all rounds (at least with high probability). For these bandits, we propose a new UCB-based algorithm called Safe-LUCB, which includes necessary modifications to respect safety constraints. The algorithm has two phases. During the pure exploration phase the learner chooses her actions at random from a restricted set of safe actions with the goal of learning a good approximation of the entire unknown safe set. Once this goal is achieved, the algorithm begins a safe exploration-exploitation phase where the learner gradually expands their estimate of the set of safe actions while controlling the growth of regret. We provide a general regret bound for the algorithm, as well as a problem dependent bound that is connected to the location of the optimal action within the safe set. We then propose a modified heuristic that exploits our problem dependent analysis to improve the regret.
We study incentivized exploration for the multi-armed bandit (MAB) problem where the players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on reward. We seek to understand the impact of this drif ted reward feedback by analyzing the performance of three instantiations of the incentivized MAB algorithm: UCB, $varepsilon$-Greedy, and Thompson Sampling. Our results show that they all achieve $mathcal{O}(log T)$ regret and compensation under the drifted reward, and are therefore effective in incentivizing exploration. Numerical examples are provided to complement the theoretical analysis.
The design of personalized incentives or recommendations to improve user engagement is gaining prominence as digital platform providers continually emerge. We propose a multi-armed bandit framework for matching incentives to users, whose preferences are unknown a priori and evolving dynamically in time, in a resource constrained environment. We design an algorithm that combines ideas from three distinct domains: (i) a greedy matching paradigm, (ii) the upper confidence bound algorithm (UCB) for bandits, and (iii) mixing times from the theory of Markov chains. For this algorithm, we provide theoretical bounds on the regret and demonstrate its performance via both synthetic and realistic (matching supply and demand in a bike-sharing platform) examples.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا