ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbed-History Exploration in Stochastic Linear Bandits

188   0   0.0 ( 0 )
 نشر من قبل Branislav Kveton
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new online algorithm for minimizing the cumulative regret in stochastic linear bandits. The key idea is to build a perturbed history, which mixes the history of observed rewards with a pseudo-history of randomly generated i.i.d. pseudo-rewards. Our algorithm, perturbed-history exploration in a linear bandit (LinPHE), estimates a linear model from its perturbed history and pulls the arm with the highest value under that model. We prove a $tilde{O}(d sqrt{n})$ gap-free bound on the expected $n$-round regret of LinPHE, where $d$ is the number of features. Our analysis relies on novel concentration and anti-concentration bounds on the weighted sum of Bernoulli random variables. To show the generality of our design, we extend LinPHE to a logistic reward model. We evaluate both algorithms empirically and show that they are practical.



قيم البحث

اقرأ أيضاً

We propose an online algorithm for cumulative regret minimization in a stochastic multi-armed bandit. The algorithm adds $O(t)$ i.i.d. pseudo-rewards to its history in round $t$ and then pulls the arm with the highest average reward in its perturbed history. Therefore, we call it perturbed-history exploration (PHE). The pseudo-rewards are carefully designed to offset potentially underestimated mean rewards of arms with a high probability. We derive near-optimal gap-dependent and gap-free bounds on the $n$-round regret of PHE. The key step in our analysis is a novel argument that shows that randomized Bernoulli rewards lead to optimism. Finally, we empirically evaluate PHE and show that it is competitive with state-of-the-art baselines.
We study two randomized algorithms for generalized linear bandits, GLM-TSL and GLM-FPL. GLM-TSL samples a generalized linear model (GLM) from the Laplace approximation to the posterior distribution. GLM-FPL fits a GLM to a randomly perturbed history of past rewards. We prove $tilde{O}(d sqrt{n log K})$ bounds on the $n$-round regret of GLM-TSL and GLM-FPL, where $d$ is the number of features and $K$ is the number of arms. The regret bound of GLM-TSL improves upon prior work and the regret bound of GLM-FPL is the first of its kind. We apply both GLM-TSL and GLM-FPL to logistic and neural network bandits, and show that they perform well empirically. In more complex models, GLM-FPL is significantly faster. Our results showcase the role of randomization, beyond sampling from the posterior, in exploration.
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of $T$ rounds is maximum, and each has an expected cost below a certain thresh old $tau$. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove an $widetilde{mathcal{O}}(frac{dsqrt{T}}{tau-c_0})$ bound on its $T$-round regret, where the denominator is the difference between the constraint threshold and the cost of a known feasible action. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting. We prove a regret bound of $widetilde{mathcal{O}}(frac{sqrt{KT}}{tau - c_0})$ for this algorithm in $K$-armed bandits, which is a $sqrt{K}$ improvement over the regret bound we obtain by simply casting multi-armed bandits as an instance of contextual linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results.
Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandits unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed ban dit problem with safety constraints that depend (linearly) on an unknown parameter vector. As such, the learner is unable to identify all safe actions and must act conservatively in ensuring that her actions satisfy the safety constraint at all rounds (at least with high probability). For these bandits, we propose a new UCB-based algorithm called Safe-LUCB, which includes necessary modifications to respect safety constraints. The algorithm has two phases. During the pure exploration phase the learner chooses her actions at random from a restricted set of safe actions with the goal of learning a good approximation of the entire unknown safe set. Once this goal is achieved, the algorithm begins a safe exploration-exploitation phase where the learner gradually expands their estimate of the set of safe actions while controlling the growth of regret. We provide a general regret bound for the algorithm, as well as a problem dependent bound that is connected to the location of the optimal action within the safe set. We then propose a modified heuristic that exploits our problem dependent analysis to improve the regret.
In the stochastic linear contextual bandit setting there exist several minimax procedures for exploration with policies that are reactive to the data being acquired. In practice, there can be a significant engineering overhead to deploy these algorit hms, especially when the dataset is collected in a distributed fashion or when a human in the loop is needed to implement a different policy. Exploring with a single non-reactive policy is beneficial in such cases. Assuming some batch contexts are available, we design a single stochastic policy to collect a good dataset from which a near-optimal policy can be extracted. We present a theoretical analysis as well as numerical experiments on both synthetic and real-world datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا