ترغب بنشر مسار تعليمي؟ اضغط هنا

HIH: Towards More Accurate Face Alignment via Heatmap in Heatmap

18   0   0.0 ( 0 )
 نشر من قبل Xing Lan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, heatmap regression models have become the mainstream in locating facial landmarks. To keep computation affordable and reduce memory usage, the whole procedure involves downsampling from the raw image to the output heatmap. However, how much impact will the quantization error introduced by downsampling bring? The problem is hardly systematically investigated among previous works. This work fills the blank and we are the first to quantitatively analyze the negative gain. The statistical results show the NME generated by quantization error is even larger than 1/3 of the SOTA item, which is a serious obstacle for making a new breakthrough in face alignment. To compensate the impact of quantization effect, we propose a novel method, called Heatmap In Heatmap(HIH), which leverages two categories of heatmaps as label representation to encode coordinate. And in HIH, the range of one heatmap represents a pixel of the other category of heatmap. Also, we even combine the face alignment with solutions of other fields to make a comparison. Extensive experiments on various benchmarks show the feasibility of HIH and the superior performance than other solutions. Moreover, the mean error reaches to 4.18 on WFLW, which exceeds SOTA a lot. Our source code are made publicly available at supplementary material.



قيم البحث

اقرأ أيضاً

Estimating the 3D pose of a hand is an essential part of human-computer interaction. Estimating 3D pose using depth or multi-view sensors has become easier with recent advances in computer vision, however, regressing pose from a single RGB image is m uch less straightforward. The main difficulty arises from the fact that 3D pose requires some form of depth estimates, which are ambiguous given only an RGB image. In this paper we propose a new method for 3D hand pose estimation from a monocular image through a novel 2.5D pose representation. Our new representation estimates pose up to a scaling factor, which can be estimated additionally if a prior of the hand size is given. We implicitly learn depth maps and heatmap distributions with a novel CNN architecture. Our system achieves the state-of-the-art estimation of 2D and 3D hand pose on several challenging datasets in presence of severe occlusions.
Deep learning methods have achieved excellent performance in pose estimation, but the lack of robustness causes the keypoints to change drastically between similar images. In view of this problem, a stable heatmap regression method is proposed to all eviate network vulnerability to small perturbations. We utilize the correlation between different rows and columns in a heatmap to alleviate the multi-peaks problem, and design a highly differentiated heatmap regression to make a keypoint discriminative from surrounding points. A maximum stability training loss is used to simplify the optimization difficulty when minimizing the prediction gap of two similar images. The proposed method achieves a significant advance in robustness over state-of-the-art approaches on two benchmark datasets and maintains high performance.
Estimating 3D human pose from a single image is a challenging task. This work attempts to address the uncertainty of lifting the detected 2D joints to the 3D space by introducing an intermediate state - Part-Centric Heatmap Triplets (HEMlets), which shortens the gap between the 2D observation and the 3D interpretation. The HEMlets utilize three joint-heatmaps to represent the relative depth information of the end-joints for each skeletal body part. In our approach, a Convolutional Network (ConvNet) is first trained to predict HEMlests from the input image, followed by a volumetric joint-heatmap regression. We leverage on the integral operation to extract the joint locations from the volumetric heatmaps, guaranteeing end-to-end learning. Despite the simplicity of the network design, the quantitative comparisons show a significant performance improvement over the best-of-grade method (by 20% on Human3.6M). The proposed method naturally supports training with in-the-wild images, where only weakly-annotated relative depth information of skeletal joints is available. This further improves the generalization ability of our model, as validated by qualitative comparisons on outdoor images.
In this paper, we propose HOME, a framework tackling the motion forecasting problem with an image output representing the probability distribution of the agents future location. This method allows for a simple architecture with classic convolution ne tworks coupled with attention mechanism for agent interactions, and outputs an unconstrained 2D top-view representation of the agents possible future. Based on this output, we design two methods to sample a finite set of agents future locations. These methods allow us to control the optimization trade-off between miss rate and final displacement error for multiple modalities without having to retrain any part of the model. We apply our method to the Argoverse Motion Forecasting Benchmark and achieve 1st place on the online leaderboard.
In this paper, we propose GOHOME, a method leveraging graph representations of the High Definition Map and sparse projections to generate a heatmap output representing the future position probability distribution for a given agent in a traffic scene. This heatmap output yields an unconstrained 2D grid representation of agent future possible locations, allowing inherent multimodality and a measure of the uncertainty of the prediction. Our graph-oriented model avoids the high computation burden of representing the surrounding context as squared images and processing it with classical CNNs, but focuses instead only on the most probable lanes where the agent could end up in the immediate future. GOHOME reaches 3$rd$ on Argoverse Motion Forecasting Benchmark on the MissRate$_6$ metric while achieving significant speed-up and memory burden diminution compared to 1$^{st}$ place method HOME. We also highlight that heatmap output enables multimodal ensembling and improve 1$^{st}$ place MissRate$_6$ by more than 15$%$ with our best ensemble.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا