ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid InP and SiN integration of an octave-spanning frequency comb

163   0   0.0 ( 0 )
 نشر من قبل Travis C Briles
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Implementing optical-frequency combs with integrated photonics will enable wider use of precision timing signals.Here, we explore the generation of an octave-span, Kerr-microresonator frequency comb, using hybrid integration ofan InP distributed-feedback laser and a SiN photonic-integrated circuit. We demonstrate electrically pumped and fiber-packaged prototype systems, enabled by self-injection locking. This direct integration of a laser and a microresonatorcircuit without previously used intervening elements, like optical modulators and isolators, necessitates understand-ing self-injection-locking dynamics with octave-span Kerr solitons. In particular, system architectures must adjust tothe strong coupling of microresonator back-scattering and laser-microresonator frequency detuning that we uncoverhere. Our work illustrates critical considerations towards realizing a self-referenced frequency comb with integratedphotonics.



قيم البحث

اقرأ أيضاً

97 - Z. He , B. Chen , Y. Hua 2020
Coherent light sources in silicon photonics are the long-sought holy grail because silicon-based materials have indirect bandgap. Traditional strategies for realizing such sources, e.g., heterogeneous photonic integration, strain engineering and nonl inear process, are technologically demanding. Here, we demonstrate a hybrid lasing device composing of perovskite nanocrystals and silicon nitride nanobeam cavity. We fabricate SiN photonic crystal naonobeam cavities on a solid substrate with significantly improved thermal and mechanical stabilities compared to conventional suspended ones. In addition, adding a PMMA-encapsulation layer on top of the SiN can significantly boost the Q-factor of the cavity mode. By dispersing perovskite nanocrystals as emitters in the PMMA layer, we obtained high-performance coherent emissions in terms of lasing threshold, linewidth and mode volumes. Our work offers a compelling way of creating solution-processed active integrated photonic devices based on the mature platform of silicon photonics for applications in optical information science and photonic quantum technology.
We describe a coherent mid-infrared continuum source with 700 cm-1 usable bandwidth, readily tuned within 600 - 2500 cm-1 (4 - 17 mum) and thus covering much of the infrared fingerprint molecular vibration region. It is based on nonlinear frequency c onversion in GaSe using a compact commercial 100-fs-pulsed Er fiber laser system providing two amplified near-infrared beams, one of them broadened by a nonlinear optical fiber. The resulting collimated mid-infrared continuum beam of 1 mW quasi-cw power represents a coherent infrared frequency comb with zero carrier-envelope phase, containing about 500,000 modes that are exact multiples of the pulse repetition rate of 40 MHz. The beams diffraction-limited performance enables long-distance spectroscopic probing as well as maximal focusability for classical and ultraresolving near-field microscopies. Applications are foreseen also in studies of transient chemical phenomena even at ultrafast pump-probe scale, and in high-resolution gas spectroscopy for e.g. breath analysis.
Rapid and large scanning of a dissipative Kerr-microresonator soliton comb with the characterization of all comb modes along with the separation of the comb modes is imperative for the emerging applications of the frequency-scanned soliton combs. How ever, the scan speed is limited by the gain of feedback systems and the measurement of the frequency shift of all comb modes has not been demonstrated. To overcome the limitation of the feedback, we incorporate the feedback with the feedforward. With the additional gain of > 40 dB by a feedforward signal, a dissipative Kerr-microresonator soliton comb is scanned by 70 GHz in 500 $mu$s, 50 GHz in 125 $mu$s, and 25 GHz in 50 $mu$s (= 500 THz/s). Furthermore, we propose and demonstrate a method to measure the frequency shift of all comb modes, in which an imbalanced Mach-Zehnder interferometer with two outputs with different wavelengths is used. Because of the two degrees of freedom of optical frequency combs, the measurement at the two different wavelengths enables the estimation of the frequency shift of all comb modes.
We present here a semiconductor injection laser operating in continuous wave with an emission covering more than one octave in frequency, and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneou s quantum cascade structure operating in the THz range. Laser emission in continuous wave takes place from 1.64 THz to 3.35 THz with optical powers in the mW range and more than 80 modes above threshold. Free-running beatnote investigations on narrow waveguides with linewidths of 980 Hz limited by jitter indicate frequency comb operation on a spectral bandwidth as wide as 624 GHz, making such devices ideal candidates for octave-spanning semiconductor-laser-based THz frequency combs.
High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا