ترغب بنشر مسار تعليمي؟ اضغط هنا

TRS: Transferability Reduced Ensemble via Encouraging Gradient Diversity and Model Smoothness

62   0   0.0 ( 0 )
 نشر من قبل Zhuolin Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial Transferability is an intriguing property of adversarial examples -- a perturbation that is crafted against one model is also effective against another model, which may arise from a different model family or training process. To better protect ML systems against adversarial attacks, several questions are raised: what are the sufficient conditions for adversarial transferability? Is it possible to bound such transferability? Is there a way to reduce the transferability in order to improve the robustness of an ensemble ML model? To answer these questions, we first theoretically analyze sufficient conditions for transferability between models and propose a practical algorithm to reduce transferability within an ensemble to improve its robustness. Our theoretical analysis shows only the orthogonality between gradients of different models is not enough to ensure low adversarial transferability: the model smoothness is also an important factor. In particular, we provide a lower/upper bound of adversarial transferability based on model gradient similarity for low risk classifiers based on gradient orthogonality and model smoothness. We demonstrate that under the condition of gradient orthogonality, smoother classifiers will guarantee lower adversarial transferability. Furthermore, we propose an effective Transferability Reduced Smooth-ensemble(TRS) training strategy to train a robust ensemble with low transferability by enforcing model smoothness and gradient orthogonality between base models. We conduct extensive experiments on TRS by comparing with other state-of-the-art baselines on different datasets, showing that the proposed TRS outperforms all baselines significantly. We believe our analysis on adversarial transferability will inspire future research towards developing robust ML models taking these adversarial transferability properties into account.

قيم البحث

اقرأ أيضاً

314 - Tianyu Pang , Kun Xu , Chao Du 2019
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness o f individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.
Ensembles of models have been empirically shown to improve predictive performance and to yield robust measures of uncertainty. However, they are expensive in computation and memory. Therefore, recent research has focused on distilling ensembles into a single compact model, reducing the computational and memory burden of the ensemble while trying to preserve its predictive behavior. Most existing distillation formulations summarize the ensemble by capturing its average predictions. As a result, the diversity of the ensemble predictions, stemming from each member, is lost. Thus, the distilled model cannot provide a measure of uncertainty comparable to that of the original ensemble. To retain more faithfully the diversity of the ensemble, we propose a distillation method based on a single multi-headed neural network, which we refer to as Hydra. The shared body network learns a joint feature representation that enables each head to capture the predictive behavior of each ensemble member. We demonstrate that with a slight increase in parameter count, Hydra improves distillation performance on classification and regression settings while capturing the uncertainty behavior of the original ensemble over both in-domain and out-of-distribution tasks.
58 - Ling Chen , Hongyu Shi 2021
Predicting user positive response (e.g., purchases and clicks) probability is a critical task in Web applications. To identify predictive features from raw data, the state-of-the-art extreme deep factorization machine (xDeepFM) model introduces a com pressed interaction network (CIN) to leverage feature interactions at the vector-wise level explicitly. However, since each hidden layer in CIN is a collection of feature maps, it can be viewed essentially as an ensemble of different feature maps. In this case, only using a single objective to minimize the prediction loss may lead to overfitting. In this paper, an ensemble diversity enhanced extreme deep factorization machine model (DexDeepFM) is proposed, which introduces the ensemble diversity measure in CIN and considers both ensemble diversity and prediction accuracy in the objective function. In addition, the attention mechanism is introduced to discriminate the importance of ensemble diversity measures with different feature interaction orders. Extensive experiments on two public real-world datasets show the superiority of the proposed model.
Deep learning algorithms have increasingly been shown to lack robustness to simple adversarial examples (AdvX). An equally troubling observation is that these adversarial examples transfer between different architectures trained on different datasets . We investigate the transferability of adversarial examples between models using the angle between the input-output Jacobians of different models. To demonstrate the relevance of this approach, we perform case studies that involve jointly training pairs of models. These case studies empirically justify the theoretical intuitions for why the angle between gradients is a fundamental quantity in AdvX transferability. Furthermore, we consider the asymmetry of AdvX transferability between two models of the same architecture and explain it in terms of differences in gradient norms between the models. Lastly, we provide a simple modification to existing training setups that reduces transferability of adversarial examples between pairs of models.
94 - Yao Yao , Li Xiao , Zhicheng An 2021
Model-based deep reinforcement learning has achieved success in various domains that require high sample efficiencies, such as Go and robotics. However, there are some remaining issues, such as planning efficient explorations to learn more accurate d ynamic models, evaluating the uncertainty of the learned models, and more rational utilization of models. To mitigate these issues, we present MEEE, a model-ensemble method that consists of optimistic exploration and weighted exploitation. During exploration, unlike prior methods directly selecting the optimal action that maximizes the expected accumulative return, our agent first generates a set of action candidates and then seeks out the optimal action that takes both expected return and future observation novelty into account. During exploitation, different discounted weights are assigned to imagined transition tuples according to their model uncertainty respectively, which will prevent model predictive error propagation in agent training. Experiments on several challenging continuous control benchmark tasks demonstrated that our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا