ﻻ يوجد ملخص باللغة العربية
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness of individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.
Ensemble-based adversarial training is a principled approach to achieve robustness against adversarial attacks. An important technique of this approach is to control the transferability of adversarial examples among ensemble members. We propose in th
Data augmentation by incorporating cheap unlabeled data from multiple domains is a powerful way to improve prediction especially when there is limited labeled data. In this work, we investigate how adversarial robustness can be enhanced by leveraging
Ensemble learning is gaining renewed interests in recent years. This paper presents EnsembleBench, a holistic framework for evaluating and recommending high diversity and high accuracy ensembles. The design of EnsembleBench offers three novel feature
Adversarial robustness has emerged as an important topic in deep learning as carefully crafted attack samples can significantly disturb the performance of a model. Many recent methods have proposed to improve adversarial robustness by utilizing adver
The study of adversarial examples and their activation has attracted significant attention for secure and robust learning with deep neural networks (DNNs). Different from existing works, in this paper, we highlight two new characteristics of adversar