ترغب بنشر مسار تعليمي؟ اضغط هنا

Multifunctional Antiferromagnetic Materials with Giant Piezomagnetism and Noncollinear Spin Current

86   0   0.0 ( 0 )
 نشر من قبل Junwei Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new type of spin-valley locking (SVL), named $textit{C}$-paired SVL, in antiferromagnetic systems, which directly connects the spin/valley space with the real space, and hence enables both static and dynamical controls of spin and valley to realize a multifunctional antiferromagnetic material. The new emergent quantum degree of freedom in the $textit{C}$-paired SVL is comprised of spin-polarized valleys related by a crystal symmetry instead of the time-reversal symmetry. Thus, both spin and valley can be accessed by simply breaking the corresponding crystal symmetry. Typically, one can use a strain field to induce a large net valley polarization/magnetization and use a charge current to generate a large noncollinear spin current. We predict the realization of the $textit{C}$-paired SVL in monolayer V$_2$Se$_2$O, which indeed exhibits giant piezomagnetism and can generate a large transverse spin current. Our findings provide unprecedented opportunities to integrate various controls of spin and valley with nonvolatile information storage in a single material, which is highly desirable for versatile fundamental research and device applications.



قيم البحث

اقرأ أيضاً

Spin-polarized currents play a key role in spintronics. Recently, it has been found that antiferromagnets with a non-spin-degenerate band structure can efficiently spin-polarize electric currents, even though their net magnetization is zero. Among th e antiferromagnetic metals with magnetic space group symmetry supporting this functionality, the noncollinear antiferromagnetic antiperovskites ANMn$_3$ (A = Ga, Ni, Sn, and Pt) are especially promising. This is due to their high Neel temperatures and a good lattice match to perovskite oxide substrates, offering possibilities of high structural quality heterostructures based on these materials. Here, we investigate the spin polarization of antiferromagnetic ANMn$_3$ metals using first-principles density functional theory calculations. We find that the spin polarization of the longitudinal currents in these materials is comparable to that in widely used ferromagnetic metals, and thus can be exploited in magnetic tunnel junctions and spin transfer torque devices. Moreover, for certain film growth directions, the out-of-plane transverse spin currents with a giant charge-to-spin conversion efficiency can be achieved, implying that the ANMn$_3$ antiperovskites can be used as efficient spin sources. These properties make ANMn$_3$ compounds promising for application in spintronics.
94 - Xin Chen , Duo Wang , Linyang Li 2021
Giant spin-splitting was recently predicted in collinear antiferromagnetic materials with a specific class of magnetic space group. In this work, we have predicted a two-dimensional (2D) antiferromagnetic Weyl semimetal (WS), CrO with large spin-spli t band structure, spin-momentum locked transport properties and high Neel temperature. It has two pairs of spin-polarized Weyl points at the Fermi level. By manipulating the position of the Weyl points with strain, four different antiferromagnetic spintronic states can be achieved: WSs with two spin-polarized transport channels (STCs), WSs with single STC, semiconductors with two STCs, and semiconductors with single STC. Based on these properties, a new avenue in spintronics with 2D collinear antiferromagnets is proposed.
We report large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet(AF)/yttrium iron garnet(YIG), where a thin AF insulating layer of NiO or CoO can enhance spin current from YIG to a NM by up to a factor of 10. The sp in current enhancement in NM/AF/YIG, with a pronounced maximum near the Neel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM/YIG interface for NM = 3d, 4d, and 5d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results.
The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. Th e ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin order-dependent ANE in noncollinear antiferromagnetic Mn-based antiperovskite nitrides Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The ANE in Mn$_{3}X$N is forbidden by symmetry in the R1 phase but amounts to its maximum value in the R3 phase. Among all Mn$_{3}X$N compounds, Mn$_{3}$NiN presents the most significant anomalous Nernst conductivity of 1.80 AK$^{-1}$m$^{-1}$ at 200 K, which can be further enhanced if strain, electric, or magnetic fields are applied. The ANE in Mn$_{3}$NiN, being one order of magnitude larger than that in the famous Mn$_{3}$Sn, is the largest one discovered in antiferromagnets so far. The giant ANE in Mn$_{3}$NiN originates from the sharp slope of the anomalous Hall conductivity at the Fermi energy, which can be understood well from the Mott relation. Our findings provide a novel host material for realizing antiferromagnetic spin caloritronics which promises exciting applications in energy conversion and information processing.
99 - Zeyu Jiang , Damien West , 2020
A general formula for the average vector potential of bulk periodic systems is proposed and shown to set the boundary conditions at magnetic interfaces. For antiferromagnetic materials, the study reveals a unique relation between the macroscopic pote ntial and the orientation-dependent magnetic quadrupole, as a result of the different crystalline and magnetic symmetries. In particular, at surfaces and interfaces of a truncated bulk without inversion and time-reversal symmetries, the average vector potential exhibits a discontinuity, which results in an interfacial magnetic field. In general, however, due to the surface and interface electronic and atomic relaxations, additional magnetization may result. For the experimentally-observed magnetoelectric antiferromagnets, in particular, our symmetry analysis suggest that the relaxation effects could well be a system response to the presence of such a potential discontinuity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا