ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A Balance System Case Study

108   0   0.0 ( 0 )
 نشر من قبل Wail Gueaieb
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

A data-driven computational heuristic is proposed to control MIMO systems without prior knowledge of their dynamics. The heuristic is illustrated on a two-input two-output balance system. It integrates a self-adjusting nonlinear threshold accepting heuristic with a neural network to compromise between the desired transient and steady state characteristics of the system while optimizing a dynamic cost function. The heuristic decides on the control gains of multiple interacting PID control loops. The neural network is trained upon optimizing a weighted-derivative like objective cost function. The performance of the developed mechanism is compared with another controller that employs a combined PID-Riccati approach. One of the salient features of the proposed control schemes is that they do not require prior knowledge of the system dynamics. However, they depend on a known region of stability for the control gains to be used as a search space by the optimization algorithm. The control mechanism is validated using different optimization criteria which address different design requirements.



قيم البحث

اقرأ أيضاً

272 - Lu Shi , Hanzhe Teng , Xinyue Kan 2020
The paper introduces a Data-driven Hierarchical Control (DHC) structure to improve performance of systems operating under the effect of system and/or environment uncertainty. The proposed hierarchical approach consists of two parts: 1) A data-driven model identification component to learn a linear approximation between reference signals given to an existing lower-level controller and uncertain time-varying plant outputs. 2) A higher-level controller component that utilizes the identified approximation and wraps around the existing controller for the system to handle modeling errors and environment uncertainties during system deployment. We derive loose and tight bounds for the identified approximations sensitivity to noisy data. Further, we show that adding the higher-level controller maintains the original systems stability. A benefit of the proposed approach is that it requires only a small amount of observations on states and inputs, and it thus works online; that feature makes our approach appealing to robotics applications where real-time operation is critical. The efficacy of the DHC structure is demonstrated in simulation and is validated experimentally using aerial robots with approximately-known mass and moment of inertia parameters and that operate under the influence of ground effect.
Applying security as a lifecycle practice is becoming increasingly important to combat targeted attacks in safety-critical systems. Among others there are two significant challenges in this area: (1) the need for models that can characterize a realis tic system in the absence of an implementation and (2) an automated way to associate attack vector information; that is, historical data, to such system models. We propose the cybersecurity body of knowledge (CYBOK), which takes in sufficiently characteristic models of systems and acts as a search engine for potential attack vectors. CYBOK is fundamentally an algorithmic approach to vulnerability exploration, which is a significant extension to the body of knowledge it builds upon. By using CYBOK, security analysts and system designers can work together to assess the overall security posture of systems early in their lifecycle, during major design decisions and before final product designs. Consequently, assisting in applying security earlier and throughout the systems lifecycle.
134 - Wei-Han Chen , Fengqi You 2019
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and f orecast error may cause the temperature to deviate from the acceptable range. To inherent uncertainty in weather that affects control accuracy, this paper develops a data-driven robust model predictive control (MPC) approach for greenhouse temperature control. The dynamic model is obtained from thermal resistance-capacitance modeling derived by the Building Resistance-Capacitance Modeling (BRCM) toolbox. Uncertainty sets of ambient temperature and solar radiation are captured by support vector clustering technique, and they are further tuned for better quality by training-calibration procedure. A case study that implements the carefully chosen uncertainty sets on robust model predictive control shows that the data-driven robust MPC has better control performance compared to rule-based control, certainty equivalent MPC, and robust MPC.
Energy savings from efficiency methods in individual residential buildings are measured in 10s of dollars, while the energy savings from such measures nationally would amount to 10s of billions of dollars, leading to the tragedy of the commons effect . The way out of this situation is via deployment of automated, integrated residential energy systems, that provide the user with a seamless, cost effective service leading to improvement of comfort and residential experience. Models are of critical importance in this context, as intelligent operating systems depend on them strongly. However, most of the currently used models of thermal behavior of buildings have high complexity leading to problems and implementation. The complexity also obscures the utilization of well know physical properties of buildings such as the thermal mass. In view of this, we investigate data-driven, simple-to-implement residential environmental models that can serve as the basis for energy saving algorithms in both retrofits and new designs of residential buildings. Despite the nonlinearity of the underlying dynamics, using Koopman operator theory framework in this study we show that a linear second order model embedding, that captures the physics that occur inside a single or multi-zone space does well when compared with data simulated using EnergyPlus. This class of models has low complexity. We show that their parameters have physical significance for the large-scale dynamics of a building and are correlated to concepts such as the thermal mass. We investigate consequences of changing the thermal mass on the energy behavior of a building system and provide best practice design suggestions.
In this paper, we present a data-driven secondary controller for regulating to some desired values several variables of interest in a power system, namely, electrical frequency, voltage magnitudes at critical buses, and active power flows through cri tical lines. The power generation system is based on distributed energy resources (DERs) interfaced with either grid-forming (GFM) or grid-following (GFL) inverters. The secondary controller is based on online feedback optimization leveraging the learned sensitivities of the changes in the system frequency, voltage magnitudes at critical buses, and active power flows through critical lines to the changes in inverter active and reactive power setpoints. To learn the sensitivities accurately from data, the feedback optimization has a built-in mechanism for keeping the secondary control inputs persistently exciting without degrading its performance. The feedback optimization also utilizes the learned power-voltage characteristics of photovoltaic (PV) arrays to compute DC-link voltage setpoints so as to allow the PV arrays to track the power setpoints. To learn the power-voltage characteristics, we separately execute a data-driven approach that fits a concave polynomial to the collected power-voltage measurements by solving a sum-of-squares (SoS) optimization. We showcase the secondary controller using the modified IEEE-14 bus test system, in which conventional energy sources are replaced with inverter-interfaced DERs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا