ﻻ يوجد ملخص باللغة العربية
In this paper, we present a data-driven secondary controller for regulating to some desired values several variables of interest in a power system, namely, electrical frequency, voltage magnitudes at critical buses, and active power flows through critical lines. The power generation system is based on distributed energy resources (DERs) interfaced with either grid-forming (GFM) or grid-following (GFL) inverters. The secondary controller is based on online feedback optimization leveraging the learned sensitivities of the changes in the system frequency, voltage magnitudes at critical buses, and active power flows through critical lines to the changes in inverter active and reactive power setpoints. To learn the sensitivities accurately from data, the feedback optimization has a built-in mechanism for keeping the secondary control inputs persistently exciting without degrading its performance. The feedback optimization also utilizes the learned power-voltage characteristics of photovoltaic (PV) arrays to compute DC-link voltage setpoints so as to allow the PV arrays to track the power setpoints. To learn the power-voltage characteristics, we separately execute a data-driven approach that fits a concave polynomial to the collected power-voltage measurements by solving a sum-of-squares (SoS) optimization. We showcase the secondary controller using the modified IEEE-14 bus test system, in which conventional energy sources are replaced with inverter-interfaced DERs.
The present distribution grids generally have limited sensing capabilities and are therefore characterized by low observability. Improved observability is a prerequisite for increasing the hosting capacity of distributed energy resources such as sola
Energy savings from efficiency methods in individual residential buildings are measured in 10s of dollars, while the energy savings from such measures nationally would amount to 10s of billions of dollars, leading to the tragedy of the commons effect
The rapid deployment of distributed energy resources (DERs) in distribution networks has brought challenges to balance the system and stabilize frequency. DERs have the ability to provide frequency regulation; however, existing dynamic frequency simu
In this paper, we propose and experimentally validate a scheduling and control framework for distributed energy resources (DERs) that achieves to track a day-ahead dispatch plan of a distribution network hosting controllable and stochastic heterogene
In this paper we study a discrete-time SIS (susceptible-infected-susceptible) model, where the infection and healing parameters and the underlying network may change over time. We provide conditions for the model to be well-defined and study its stab