ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrostatic reaction inhibition in nanoparticle catalysis

93   0   0.0 ( 0 )
 نشر من قبل Yi-Chen Lin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrostatic reaction inhibition in heterogeneous catalysis emerges if charged reactants and products are adsorbed on the catalyst and thus repel the approaching reactants. In this work, we study the effects of electrostatic inhibition on the reaction rate of unimolecular reactions catalyzed on the surface of a spherical model nanoparticle by using particle-based reaction-diffusion simulations. Moreover, we derive closed rate equations based on approximate Debye-Smoluchowski rate theory, valid for diffusion-controlled reactions, and a modified Langmuir adsorption isotherm, relevant for reaction-controlled reactions, to account for electrostatic inhibition in the Debye-Huckel limit. We study the kinetics of reactions ranging from low to high adsorptions on the nanoparticle surface and from the surface- to diffusion-controlled limits for charge valencies 1 and 2. In the diffusion-controlled limit, electrostatic inhibition drastically slows down the reactions for strong adsorption and low ionic concentration, which is well described by our theory. In particular, the rate decreases with adsorption affinity, because in this case the inhibiting products are generated at high rate. In the (slow) reaction-controlled limit, the effect of electrostatic inhibition is much weaker, as semi-quantitatively reproduced by our electrostatic-modified Langmuir theory. We finally propose and verify a simple interpolation formula that describes electrostatic inhibition for all reaction speeds (`diffusion-influenced reactions) in general.

قيم البحث

اقرأ أيضاً

Quantum thermodynamics is a research field that aims at fleshing out the ultimate limits of thermodynamic processes in the deep quantum regime. A complete picture of quantum thermodynamics allows for catalysts, i.e., systems facilitating state transf ormations while remaining essentially intact in their state, very much reminding of catalysts in chemical reactions. In this work, we present a comprehensive analysis of the power and limitation of such thermal catalysis. Specifically, we provide a family of optimal catalysts that can be returned with minimal trace distance error after facilitating a state transformation process. To incorporate the genuine physical role of a catalyst, we identify very significant restrictions on arbitrary state transformations under dimension or mean energy bounds, using methods of convex relaxations. We discuss the implication of these findings on possible thermodynamic state transformations in the quantum regime.
Text-book concepts of diffusion- versus kinetic-control are well-defined for reaction-kinetics involving macroscopic concentrations of diffusive reactants that are adequately described by rate-constants -- the inverse of the mean-first-passage-time t o the reaction-event. In contradistinction, an open important question is whether the mean-first-passage-time alone is a sufficient measure for biochemical reactions that involve nanomolar reactant concentrations. Here, using a simple yet generic, exactly-solvable model we study the conspiratory effect of diffusion and chemical reaction-limitations on the full reaction-time distribution. We show that it has a complex structure with four distinct regimes delimited by three characteristic time scales spanning a window of several decades. Consequently, the reaction-times are defocused: no unique time-scale characterises the reaction-process, diffusion- and kinetic-control can no longer be disentangled, and it is imperative to know the full reaction-time distribution. We introduce the concepts of geometry- and reaction-control, and also quantify each regime by calculating the corresponding reaction depth.
166 - Paolo Elvati , Angela Violi 2014
A variety of natural phenomena comprises a huge number of competing reactions and short-lived intermediates. Any study of such processes requires the discovery and accurate modeling of their underlying reaction network. However, this task is challeng ing due to the complexity in exploring all the possible pathways and the high computational cost in accurately modeling a large number of reactions. Fortunately, very often these processes are dominated by only a limited subset of the networks reaction pathways. In this work we propose a novel computationally inexpensive method to identify and select the key pathways of complex reaction networks, so that high-level ab-initio calculations can be more efficiently targeted at these critical reactions. The method estimates the relative importance of the reaction pathways for given reactants by analyzing the accelerated evolution of hundreds of replicas of the system and detecting products formation. This acceleration-detection method is able to tremendously speed up the reactivity of uni- and bimolecular reactions, without requiring any previous knowledge of products or transition states. Importantly, the method is efficiently iterative, as it can be straightforwardly applied for the most frequently observed products, therefore providing an efficient algorithm to identify the key reactions of extended chemical networks. We verified the validity of our approach on three different systems, including the reactivity of t-decalin with a methyl radical, and in all cases the expected behavior was recovered within statistical error.
A model Hamiltonian for the reaction CH$_4^+ rightarrow$ CH$_3^+$ + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition sta tes and conventional/roaming reaction pathways are identified in terms of time-invariant objects in phase space. These are dividing surfaces associated with normally hyperbolic invariant manifolds (NHIMs). For systems with two degrees of freedom NHIMS are unstable periodic orbits which, in conjunction with their stable and unstable manifolds, unambiguously define the (locally) non-recrossing dividing surfaces assumed in statistical theories of reaction rates. By constructing periodic orbit continuation/bifurcation diagrams for two values of the potential function parameter corresponding to late and early transition states, respectively, and using the total energy as another parameter, we dynamically assign different regions of phase space to reactants and products as well as to conventional and roaming reaction pathways. The classical dynamics of the system are investigated by uniformly sampling trajectory initial conditions on the dividing surfaces. Trajectories are classified into four different categories: direct reactive and non reactive trajectories,which lead to the formation of molecular and radical products respectively, and roaming reactive and non reactive orbiting trajectories, which represent alternative pathways to form molecular and radical products. By analysing gap time distributions at several energies we demonstrate that the phase space structure of the roaming region, which is strongly influenced by non-linear resonances between the two degrees of freedom, results in nonexponential (nonstatistical) decay.
393 - Prashant K. Jain 2019
A range of chemical reactions occurring on the surfaces of metal nanoparticles exhibit enhanced rates under plasmonic excitation. Recent analyses based on Arrhenius law fitting have argued in favor of a purely photothermal mechanism of enhancement an d suggested the lack of an involvement of hot electrons. However, there is a caveat as shown here: under certain scenarios, it is practically impossible to distinguish between a photochemical (non-thermal) effect of plasmonic excitation and a purely photothermal one using a phenomenological Arrhenius fitting of the reaction rates alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا