ﻻ يوجد ملخص باللغة العربية
A variety of natural phenomena comprises a huge number of competing reactions and short-lived intermediates. Any study of such processes requires the discovery and accurate modeling of their underlying reaction network. However, this task is challenging due to the complexity in exploring all the possible pathways and the high computational cost in accurately modeling a large number of reactions. Fortunately, very often these processes are dominated by only a limited subset of the networks reaction pathways. In this work we propose a novel computationally inexpensive method to identify and select the key pathways of complex reaction networks, so that high-level ab-initio calculations can be more efficiently targeted at these critical reactions. The method estimates the relative importance of the reaction pathways for given reactants by analyzing the accelerated evolution of hundreds of replicas of the system and detecting products formation. This acceleration-detection method is able to tremendously speed up the reactivity of uni- and bimolecular reactions, without requiring any previous knowledge of products or transition states. Importantly, the method is efficiently iterative, as it can be straightforwardly applied for the most frequently observed products, therefore providing an efficient algorithm to identify the key reactions of extended chemical networks. We verified the validity of our approach on three different systems, including the reactivity of t-decalin with a methyl radical, and in all cases the expected behavior was recovered within statistical error.
The concept of the limiting step is extended to the asymptotology of multiscale reaction networks. Complete theory for linear networks with well separated reaction rate constants is developed. We present algorithms for explicit approximations of eige
In this study, we analyze how changes in the geometry of a potential energy surface in terms of depth and flatness can affect the reaction dynamics. We formulate depth and flatness in the context of one and two degree-of-freedom (DOF) Hamiltonian nor
Text-book concepts of diffusion- versus kinetic-control are well-defined for reaction-kinetics involving macroscopic concentrations of diffusive reactants that are adequately described by rate-constants -- the inverse of the mean-first-passage-time t
Electrostatic reaction inhibition in heterogeneous catalysis emerges if charged reactants and products are adsorbed on the catalyst and thus repel the approaching reactants. In this work, we study the effects of electrostatic inhibition on the reacti
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polyno