ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole parameter estimation with synthetic Very Long Baseline Interferometry data from the ground and from space

359   0   0.0 ( 0 )
 نشر من قبل Freek Roelofs
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Event Horizon Telescope (EHT) has imaged the shadow of the supermassive black hole in M87. A library of general relativistic magnetohydrodynamics (GMRHD) models was fit to the observational data, providing constraints on black hole parameters. We investigate how much better future experiments can realistically constrain these parameters and test theories of gravity. We generate realistic synthetic 230 GHz data from representative input models taken from a GRMHD image library for M87, using the 2017, 2021, and an expanded EHT array. The synthetic data are run through a data reduction pipeline used by the EHT. Additionally, we simulate observations at 230, 557, and 690 GHz with the Event Horizon Imager (EHI) Space VLBI concept. Using one of the EHT parameter estimation pipelines, we fit the GRMHD library images to the synthetic data and investigate how the black hole parameter estimations are affected by different arrays and repeated observations. Repeated observations play an important role in constraining black hole and accretion parameters as the varying source structure is averaged out. A modest expansion of the EHT already leads to stronger parameter constraints. High-frequency observations from space rule out all but ~15% of the GRMHD models in our library, strongly constraining the magnetic flux and black hole spin. The 1$sigma$ constraints on the black hole mass improve by a factor of five with repeated high-frequency space array observations as compared to observations with the current ground array. If the black hole spin, magnetization, and electron temperature distribution can be independently constrained, the shadow size for a given black hole mass can be tested to ~0.5% with the EHI, which allows tests of deviations from general relativity. High-precision tests of the Kerr metric become within reach from observations of the Galactic Center black hole Sagittarius A*.



قيم البحث

اقرأ أيضاً

Space very long baseline interferometry (VLBI) has unique applications in high-resolution imaging of fine structure of astronomical objects and high-precision astrometry due to the key long space-Earth or space-space baselines beyond the Earths diame ter. China has been actively involved in the development of space VLBI in recent years. This review briefly summarizes Chinas research progress in space VLBI and the future development plan.
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these extremely sensitive stations with other radio telescopes, and in SKA2 by realising a distributed configuration providing baselines up to thousands of km, merging it with existing VLBI networks. The motivation for and the possible realization of SKA-VLBI is described in this paper.
Operating 1.5 million km from Earth at the Sun-Earth L2 Lagrange point, the Origins Space Telescope equipped with a slightly modified version of its HERO heterodyne instrument could function as a uniquely valuable node in a VLBI network. The unpreced ented angular resolution resulting from the combination of Origins with existing ground-based millimeter/submillimeter telescope arrays would increase the number of spatially resolvable black holes by a factor of a million, permit the study of these black holes across all of cosmic history, and enable new tests of general relativity by unveiling the photon ring substructure in the nearest black holes.
Some models of the expanding Universe predict that the astrometric proper motion of distant radio sources embedded in space-time are non-zero as the radial distance from observer to the source grows. Systematic proper motion effects would produce a p redictable quadrupole pattern on the sky that could be detected using Very Long Baseline Interferometry (VLBI) technique. This quadrupole pattern can be interpreted either as an anisotropic Hubble expansion, or as a signature of the primordial gravitational waves in the early Universe. We present our analysis of a large set of geodetic VLBI data spanning 1979--2015 to estimate the dipole and quadrupole harmonics in the expansion of the vector field of the proper motions of quasars in the sky. The analysis is repeated for different redshift zones.
We present the jet kinematics of the flat spectrum radio quasar (FSRQ) 4C +21.35 using time-resolved KaVA very long baseline interferometry array radio maps obtained from September 2014 to July 2016. During two out of three observing campaigns, obser vations were performed bi-weekly at 22 and 43 GHz quasi-simultaneously. At 22 GHz, we identified three jet components near the core with apparent speeds up to (14.4+/-2.1)c. The timing of the ejection of a new component detected in 2016 is consistent with a gamma-ray flare in November 2014. At 43 GHz, we found four inner jet (<3 mas) components with speeds from (3.5+/-1.4)c to (6.8+/-1.5)c. Jet component speeds tend to be higher with increasing distances from the core. We compared our data with archival Very Long Baseline Array (VLBA) data from the Boston University (BU) 43 GHz and the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) 15.4 GHz monitoring programs. Whereas MOJAVE data and our data are in good agreement, jet speeds obtained from the BU Program data in the same time period are about twice as high as the ones we obtain from the KaVA data. The discrepancy at 43 GHz indicates that radio arrays with different angular resolution identify and trace different jet features even when the data are obtained at the same frequency and at the same time. The flux densities of jet components decay exponentially, in agreement with a synchrotron cooling time scale of about 1 year. Using known electron Lorentz factor values (about 9,000), we estimate the magnetic field strength to be around 1-3 micro-Tesla. When adopting a jet viewing angle of 5 degrees, the intrinsic jet speed is of order 0.99c.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا