ﻻ يوجد ملخص باللغة العربية
We present the jet kinematics of the flat spectrum radio quasar (FSRQ) 4C +21.35 using time-resolved KaVA very long baseline interferometry array radio maps obtained from September 2014 to July 2016. During two out of three observing campaigns, observations were performed bi-weekly at 22 and 43 GHz quasi-simultaneously. At 22 GHz, we identified three jet components near the core with apparent speeds up to (14.4+/-2.1)c. The timing of the ejection of a new component detected in 2016 is consistent with a gamma-ray flare in November 2014. At 43 GHz, we found four inner jet (<3 mas) components with speeds from (3.5+/-1.4)c to (6.8+/-1.5)c. Jet component speeds tend to be higher with increasing distances from the core. We compared our data with archival Very Long Baseline Array (VLBA) data from the Boston University (BU) 43 GHz and the Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) 15.4 GHz monitoring programs. Whereas MOJAVE data and our data are in good agreement, jet speeds obtained from the BU Program data in the same time period are about twice as high as the ones we obtain from the KaVA data. The discrepancy at 43 GHz indicates that radio arrays with different angular resolution identify and trace different jet features even when the data are obtained at the same frequency and at the same time. The flux densities of jet components decay exponentially, in agreement with a synchrotron cooling time scale of about 1 year. Using known electron Lorentz factor values (about 9,000), we estimate the magnetic field strength to be around 1-3 micro-Tesla. When adopting a jet viewing angle of 5 degrees, the intrinsic jet speed is of order 0.99c.
We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array),
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these
We present total and polarized intensity images of 15 active galactic nuclei obtained with the Very Long Baseline Array at 7 mm at 17 epochs from 1998 March to 2001 April. At some epochs the images are accompanied by nearly simultaneous polarization
We report results from 5-day VLBI observations of the well-known quasar 3C 279 at 1.3 mm (230 GHz) in 2011. The measured nonzero closure phases on triangles including stations in Arizona, California and Hawaii indicate that the source structure is sp
Some models of the expanding Universe predict that the astrometric proper motion of distant radio sources embedded in space-time are non-zero as the radial distance from observer to the source grows. Systematic proper motion effects would produce a p