ﻻ يوجد ملخص باللغة العربية
Operating 1.5 million km from Earth at the Sun-Earth L2 Lagrange point, the Origins Space Telescope equipped with a slightly modified version of its HERO heterodyne instrument could function as a uniquely valuable node in a VLBI network. The unprecedented angular resolution resulting from the combination of Origins with existing ground-based millimeter/submillimeter telescope arrays would increase the number of spatially resolvable black holes by a factor of a million, permit the study of these black holes across all of cosmic history, and enable new tests of general relativity by unveiling the photon ring substructure in the nearest black holes.
Space very long baseline interferometry (VLBI) has unique applications in high-resolution imaging of fine structure of astronomical objects and high-precision astrometry due to the key long space-Earth or space-space baselines beyond the Earths diame
Adding VLBI capability to the SKA arrays will greatly broaden the science of the SKA, and is feasible within the current specifications. SKA-VLBI can be initially implemented by providing phased-array outputs for SKA1-MID and SKA1-SUR and using these
The Origins Space Telescope, one of four large Mission Concept studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins. We briefly describe
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have create
The number of publications of aperture-synthesis images based on optical long-baseline interferometry measurements has recently increased due to easier access to visible and infrared interferometers. The interferometry technique has now reached a tec