ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting Demand for Air Taxi Urban Aviation Services using Machine Learning Algorithms

63   0   0.0 ( 0 )
 نشر من قبل Sharan Srinivas
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This research focuses on predicting the demand for air taxi urban air mobility (UAM) services during different times of the day in various geographic regions of New York City using machine learning algorithms (MLAs). Several ride-related factors (such as month of the year, day of the week and time of the day) and weather-related variables (such as temperature, weather conditions and visibility) are used as predictors for four popular MLAs, namely, logistic regression, artificial neural networks, random forests, and gradient boosting. Experimental results suggest gradient boosting to consistently provide higher prediction performance. Specific locations, certain time periods and weekdays consistently emerged as critical predictors.



قيم البحث

اقرأ أيضاً

Most existing work on predicting NCAAB matches has been developed in a statistical context. Trusting the capabilities of ML techniques, particularly classification learners, to uncover the importance of features and learn their relationships, we eval uated a number of different paradigms on this task. In this paper, we summarize our work, pointing out that attributes seem to be more important than models, and that there seems to be an upper limit to predictive quality.
Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in or igin regions, but neglected the modeling of the specific situation of the destination passengers. We believe it is suboptimal to preallocate the taxi into each region based solely on the taxi origin demand. In this paper, we present a challenging and worth-exploring task, called taxi origin-destination demand prediction, which aims at predicting the taxi demand between all region pairs in a future time interval. Its main challenges come from how to effectively capture the diverse contextual information to learn the demand patterns. We address this problem with a novel Contextualized Spatial-Temporal Network (CSTN), which consists of three components for the modeling of local spatial context (LSC), temporal evolution context (TEC) and global correlation context (GCC) respectively. Firstly, an LSC module utilizes two convolution neural networks to learn the local spatial dependencies of taxi demand respectively from the origin view and the destination view. Secondly, a TEC module incorporates both the local spatial features of taxi demand and the meteorological information to a Convolutional Long Short-term Memory Network (ConvLSTM) for the analysis of taxi demand evolution. Finally, a GCC module is applied to model the correlation between all regions by computing a global correlation feature as a weighted sum of all regional features, with the weights being calculated as the similarity between the corresponding region pairs. Extensive experiments and evaluations on a large-scale dataset well demonstrate the superiority of our CSTN over other compared methods for taxi origin-destination demand prediction.
This work presents Origami, which provides privacy-preserving inference for large deep neural network (DNN) models through a combination of enclave execution, cryptographic blinding, interspersed with accelerator-based computation. Origami partitions the ML model into multiple partitions. The first partition receives the encrypted user input within an SGX enclave. The enclave decrypts the input and then applies cryptographic blinding to the input data and the model parameters. Cryptographic blinding is a technique that adds noise to obfuscate data. Origami sends the obfuscated data for computation to an untrusted GPU/CPU. The blinding and de-blinding factors are kept private by the SGX enclave, thereby preventing any adversary from denoising the data, when the computation is offloaded to a GPU/CPU. The computed output is returned to the enclave, which decodes the computation on noisy data using the unblinding factors privately stored within SGX. This process may be repeated for each DNN layer, as has been done in prior work Slalom. However, the overhead of blinding and unblinding the data is a limiting factor to scalability. Origami relies on the empirical observation that the feature maps after the first several layers can not be used, even by a powerful conditional GAN adversary to reconstruct input. Hence, Origami dynamically switches to executing the rest of the DNN layers directly on an accelerator without needing any further cryptographic blinding intervention to preserve privacy. We empirically demonstrate that using Origami, a conditional GAN adversary, even with an unlimited inference budget, cannot reconstruct the input. We implement and demonstrate the performance gains of Origami using the VGG-16 and VGG-19 models. Compared to running the entire VGG-19 model within SGX, Origami inference improves the performance of private inference from 11x while using Slalom to 15.1x.
In recent years, the US has experienced an opioid epidemic with an unprecedented number of drugs overdose deaths. Research finds such overdose deaths are linked to neighborhood-level traits, thus providing opportunity to identify effective interventi ons. Typically, techniques such as Ordinary Least Squares (OLS) or Maximum Likelihood Estimation (MLE) are used to document neighborhood-level factors significant in explaining such adverse outcomes. These techniques are, however, less equipped to ascertain non-linear relationships between confounding factors. Hence, in this study we apply machine learning based techniques to identify opioid risks of neighborhoods in Delaware and explore the correlation of these factors using Shapley Additive explanations (SHAP). We discovered that the factors related to neighborhoods environment, followed by education and then crime, were highly correlated with higher opioid risk. We also explored the change in these correlations over the years to understand the changing dynamics of the epidemic. Furthermore, we discovered that, as the epidemic has shifted from legal (i.e., prescription opioids) to illegal (e.g.,heroin and fentanyl) drugs in recent years, the correlation of environment, crime and health related variables with the opioid risk has increased significantly while the correlation of economic and socio-demographic variables has decreased. The correlation of education related factors has been higher from the start and has increased slightly in recent years suggesting a need for increased awareness about the opioid epidemic.
In this study, we propose a three-stage framework for the planning and scheduling of high-capacity mobility-on-demand services (e.g., micro transit and flexible transit) at urban activity hubs. The proposed framework consists of (1) the route generat ion step to and from the activity hub with connectivity to existing transit systems, and (2) the robust route scheduling step which determines the vehicle assignment and route headway under demand uncertainty. Efficient exact and heuristic algorithms are developed for identifying the minimum number of routes that maximize passenger coverage, and a matching scheme is proposed to combine routes to and from the hub into roundtrips optimally. With the generated routes, the robust route scheduling problem is formulated as a two-stage robust optimization problem. Model reformulations are introduced to solve the robust optimization problem into the global optimum. In this regard, the proposed framework presents both algorithmic and analytic solutions for developing the hub-based transit services in response to the varying passenger demand over a short-time period. To validate the effectiveness of the proposed framework, comprehensive numerical experiments are conducted for planning the HHMoD services at the JFK airport in New York City (NYC). The results show the superior performance of the proposed route generation algorithm to maximize the citywide coverage more efficiently. The results also demonstrate the cost-effectiveness of the robust route schedules under normal demand conditions and against worst-case-oriented realizations of passenger demand.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا