ترغب بنشر مسار تعليمي؟ اضغط هنا

Demand-Adaptive Route Planning and Scheduling for Urban Hub-based High-Capacity Mobility-on-Demand Services

156   0   0.0 ( 0 )
 نشر من قبل Xinwu Qian
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we propose a three-stage framework for the planning and scheduling of high-capacity mobility-on-demand services (e.g., micro transit and flexible transit) at urban activity hubs. The proposed framework consists of (1) the route generation step to and from the activity hub with connectivity to existing transit systems, and (2) the robust route scheduling step which determines the vehicle assignment and route headway under demand uncertainty. Efficient exact and heuristic algorithms are developed for identifying the minimum number of routes that maximize passenger coverage, and a matching scheme is proposed to combine routes to and from the hub into roundtrips optimally. With the generated routes, the robust route scheduling problem is formulated as a two-stage robust optimization problem. Model reformulations are introduced to solve the robust optimization problem into the global optimum. In this regard, the proposed framework presents both algorithmic and analytic solutions for developing the hub-based transit services in response to the varying passenger demand over a short-time period. To validate the effectiveness of the proposed framework, comprehensive numerical experiments are conducted for planning the HHMoD services at the JFK airport in New York City (NYC). The results show the superior performance of the proposed route generation algorithm to maximize the citywide coverage more efficiently. The results also demonstrate the cost-effectiveness of the robust route schedules under normal demand conditions and against worst-case-oriented realizations of passenger demand.

قيم البحث

اقرأ أيضاً

This research focuses on predicting the demand for air taxi urban air mobility (UAM) services during different times of the day in various geographic regions of New York City using machine learning algorithms (MLAs). Several ride-related factors (suc h as month of the year, day of the week and time of the day) and weather-related variables (such as temperature, weather conditions and visibility) are used as predictors for four popular MLAs, namely, logistic regression, artificial neural networks, random forests, and gradient boosting. Experimental results suggest gradient boosting to consistently provide higher prediction performance. Specific locations, certain time periods and weekdays consistently emerged as critical predictors.
We consider the problem of demand-side energy management, where each household is equipped with a smart meter that is able to schedule home appliances online. The goal is to minimise the overall cost under a real-time pricing scheme. While previous w orks have introduced centralised approaches, we formulate the smart grid environment as a Markov game, where each household is a decentralised agent, and the grid operator produces a price signal that adapts to the energy demand. The main challenge addressed in our approach is partial observability and perceived non-stationarity of the environment from the viewpoint of each agent. We propose a multi-agent extension of a deep actor-critic algorithm that shows success in learning in this environment. This algorithm learns a centralised critic that coordinates training of all agents. Our approach thus uses centralised learning but decentralised execution. Simulation results show that our online deep reinforcement learning method can reduce both the peak-to-average ratio of total energy consumed and the cost of electricity for all households based purely on instantaneous observations and a price signal.
This study presents an innovative solution for powering electric vehicles, named Charging-as-a-Service (CaaS), that concerns the potential large-scale adoption of light-duty electric vehicles (LDEV) in the Mobility-as-a-Service (MaaS) industry. Analo gous to the MaaS, the core idea of the CaaS is to dispatch service vehicles (SVs) that carry modular battery units (MBUs) to provide LDEVs for mobility service with on-demand battery delivery. The CaaS system is expected to tackle major bottlenecks of a large-scale LDEV adoption in the MaaS industry due to the lack of charging infrastructure and excess waiting and charging time. A hybrid agent-based simulation model (HABM) is developed to model the dynamics of the CaaS system with SV agents, and a trip-based stationary charging probability distribution is introduced to simulate the generation of charging demand for LDEVs. Two dispatching algorithms are further developed to support the optimal operation of the CaaS. The model is validated by assuming electrifying all 13,000 yellow taxis in New York City (NYC) that follow the same daily trip patterns. Multiple scenarios are analyzed under various SV fleet sizes and dispatching strategies. The results suggest that optimal deployment of 250 SVs may serve the LDEV fleet in NYC with an average waiting time of 5 minutes, save the travel distance at over 50 miles per minute, and gain considerable profits of up to $50 per minute. This study offers significant insights into the feasibility, service efficiency, and financial sustainability for deploying city-wide CaaS systems to power the electric MaaS industry.
120 - Matthew Tsao , Ramon Iglesias , 2018
This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first present the core stochastic optimization problem in terms of a time-expanded network flow model. Then, to ameliorate its tractability, we present two key relaxations. First, we replace the original stochastic problem with a Sample Average Approximation (SAA), and characterize the performance guarantees. Second, we separate the controller into two separate parts to address the task of assigning vehicles to the outstanding customers separate from that of rebalancing. This enables the problem to be solved as two totally unimodular linear programs, and thus easily scalable to large problem sizes. Finally, we test the proposed algorithm in two scenarios based on real data and show that it outperforms prior state-of-the-art algorithms. In particular, in a simulation using customer data from DiDi Chuxing, the algorithm presented here exhibits a 62.3 percent reduction in customer waiting time compared to state of the art non-stochastic algorithms.
Concepts of Mobility-on-Demand (MOD) and Mobility as a Service (MaaS), which feature the integration of various shared-use mobility options, have gained widespread popularity in recent years. While these concepts promise great benefits to travelers, their heavy reliance on technology raises equity concerns as socially disadvantaged population groups can be left out in an era of on-demand mobility. This paper investigates the potential uptake of MOD transit services (integrated fixed-route and on-demand services) among travelers living in low-income communities. Specially, we analyze peoples latent attitude towards three shared-use mobility services, including ride-hailing services, fixed-route transit, and MOD transit. We conduct a latent class cluster analysis of 825 survey respondents sampled from low-income neighborhoods in Detroit and Ypsilanti, Michigan. We identified three latent segments: shared-mode enthusiast, shared-mode opponent, and fixed-route transit loyalist. People from the shared-mode enthusiast segment often use ride-hailing services and live in areas with poor transit access, and they are likely to be the early adopters of MOD transit services. The shared-mode opponent segment mainly includes vehicle owners who lack interests in shared mobility options. The fixed-route transit loyalist segment includes a considerable share of low-income individuals who face technological barriers to use the MOD transit. We also find that males, college graduates, car owners, people with a mobile data plan, and people living in poor-transit-access areas have a higher level of preferences for MOD transit services. We conclude with policy recommendations for developing more accessible and equitable MOD transit services.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا