ﻻ يوجد ملخص باللغة العربية
We show that for each single crossing graph $H$, a polynomially bounded weight function for all $H$-minor free graphs $G$ can be constructed in Logspace such that it gives nonzero weights to all the cycles in $G$. This class of graphs subsumes almost all classes of graphs for which such a weight function is known to be constructed in Logspace. As a consequence, we obtain that for the class of $H$-minor free graphs where $H$ is a single crossing graph, reachability can be solved in UL, and bipartite maximum matching can be solved in SPL, which are small subclasses of the parallel complexity class NC. In the restrictive case of bipartite graphs, our maximum matching result improves upon the recent result of Eppstein and Vazirani, where they show an NC bound for constructing perfect matching in general single crossing minor free graphs.
Temporal graphs (in which edges are active at specified times) are of particular relevance for spreading processes on graphs, e.g.~the spread of disease or dissemination of information. Motivated by real-world applications, modification of static gra
The problem of graph Reachability is to decide whether there is a path from one vertex to another in a given graph. In this paper, we study the Reachability problem on three distinct graph families - intersection graphs of Jordan regions, unit contac
In the literature on parameterized graph problems, there has been an increased effort in recent years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator to a specific graph class. In this line
Understanding the structure of minor-free metrics, namely shortest path metrics obtained over a weighted graph excluding a fixed minor, has been an important research direction since the fundamental work of Robertson and Seymour. A fundamental idea t
A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges $g,e_1,...e_k$, such that $e_1,e_2,...e_k$ have a common endpoint and $g$ crosses all $e_i$. We prove a tight bound of 4n-8 on the maximum number of