ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Number of Edges of Fan-Crossing Free Graphs

135   0   0.0 ( 0 )
 نشر من قبل Otfried Cheong
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A graph drawn in the plane with n vertices is k-fan-crossing free for k > 1 if there are no k+1 edges $g,e_1,...e_k$, such that $e_1,e_2,...e_k$ have a common endpoint and $g$ crosses all $e_i$. We prove a tight bound of 4n-8 on the maximum number of edges of a 2-fan-crossing free graph, and a tight 4n-9 bound for a straight-edge drawing. For k > 2, we prove an upper bound of 3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties.



قيم البحث

اقرأ أيضاً

89 - Tomas Feder , Pavol Hell , 2018
Barnette identified two interesting classes of cubic polyhedral graphs for which he conjectured the existence of a Hamiltonian cycle. Goodey proved the conjecture for the intersection of the two classes. We examine these classes from the point of vie w of distance-two colorings. A distance-two $r$-coloring of a graph $G$ is an assignment of $r$ colors to the vertices of $G$ so that any two vertices at distance at most two have different colors. Note that a cubic graph needs at least four colors. The distance-two four-coloring problem for cubic planar graphs is known to be NP-complete. We claim the problem remains NP-complete for tri-connected bipartite cubic planar graphs, which we call type-one Barnette graphs, since they are the first class identified by Barnette. By contrast, we claim the problem is polynomial for cubic plane graphs with face sizes $3, 4, 5,$ or $6$, which we call type-two Barnette graphs, because of their relation to Barnettes second conjecture. We call Goodey graphs those type-two Barnette graphs all of whose faces have size $4$ or $6$. We fully describe all Goodey graphs that admit a distance-two four-coloring, and characterize the remaining type-two Barnette graphs that admit a distance-two four-coloring according to their face size. For quartic plane graphs, the analogue of type-two Barnette graphs are graphs with face sizes $3$ or $4$. For this class, the distance-two four-coloring problem is also polynomial; in fact, we can again fully describe all colorable instances -- there are exactly two such graphs.
Research about crossings is typically about minimization. In this paper, we consider emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any g raph has a emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.
90 - J. Ai , S. Gerke , G. Gutin 2019
An orientation of $G$ is a digraph obtained from $G$ by replacing each edge by exactly one of two possible arcs with the same endpoints. We call an orientation emph{proper} if neighbouring vertices have different in-degrees. The proper orientation nu mber of a graph $G$, denoted by $vec{chi}(G)$, is the minimum maximum in-degree of a proper orientation of G. Araujo et al. (Theor. Comput. Sci. 639 (2016) 14--25) asked whether there is a constant $c$ such that $vec{chi}(G)leq c$ for every outerplanar graph $G$ and showed that $vec{chi}(G)leq 7$ for every cactus $G.$ We prove that $vec{chi}(G)leq 3$ if $G$ is a triangle-free $2$-connected outerplanar graph and $vec{chi}(G)leq 4$ if $G$ is a triangle-free bridgeless outerplanar graph.
Let $D$ be an oriented graph. The inversion of a set $X$ of vertices in $D$ consists in reversing the direction of all arcs with both ends in $X$. The inversion number of $D$, denoted by ${rm inv}(D)$, is the minimum number of
232 - Shachar Lovett , Raghu Meka 2012
Minimizing the discrepancy of a set system is a fundamental problem in combinatorics. One of the cornerstones in this area is the celebrated six standard deviations result of Spencer (AMS 1985): In any system of n sets in a universe of size n, there always exists a coloring which achieves discrepancy 6sqrt{n}. The original proof of Spencer was existential in nature, and did not give an efficient algorithm to find such a coloring. Recently, a breakthrough work of Bansal (FOCS 2010) gave an efficient algorithm which finds such a coloring. His algorithm was based on an SDP relaxation of the discrepancy problem and a clever rounding procedure. In this work we give a new randomized algorithm to find a coloring as in Spencers result based on a restricted random walk we call Edge-Walk. Our algorithm and its analysis use only basic linear algebra and is truly constructive in that it does not appeal to the existential arguments, giving a new proof of Spencers theorem and the partial coloring lemma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا